Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper methanol

IMPROVEMENTS TO RANEY COPPER METHANOL SYNTHESIS CATALYSTS THROUGH ZINC IMPREGNATION. III. ACTIVITY TESTING ... [Pg.239]

As an example of the application of a fixed-bed tubular reactor, consider the production of methanol. Synthesis gas (a mixture of hydrogen, carbon monoxide, and carbon dioxide) is reacted over a copper-based cat dyst. The main reactions are... [Pg.56]

This zinc-copper couple reacts with methanol, the mixture reducing an alkyl halide to an alkane ... [Pg.417]

CO, and methanol react in the first step in the presence of cobalt carbonyl catalyst and pyridine [110-86-1] to produce methyl pentenoates. A similar second step, but at lower pressure and higher temperature with rhodium catalyst, produces dimethyl adipate [627-93-0]. This is then hydrolyzed to give adipic acid and methanol (135), which is recovered for recycle. Many variations to this basic process exist. Examples are ARCO s palladium/copper-catalyzed oxycarbonylation process (136—138), and Monsanto s palladium and quinone [106-51-4] process, which uses oxygen to reoxidize the by-product... [Pg.244]

The alkalized zinc oxide—chromia process developed by SEHT was tested on a commercial scale between 1982 and 1987 in a renovated high pressure methanol synthesis plant in Italy. This plant produced 15,000 t/yr of methanol containing approximately 30% higher alcohols. A demonstration plant for the lEP copper—cobalt oxide process was built in China with a capacity of 670 t/yr, but other higher alcohol synthesis processes have been tested only at bench or pilot-plant scale (23). [Pg.165]

Dimethyl Ether. Synthesis gas conversion to methanol is limited by equiUbrium. One way to increase conversion of synthesis gas is to remove product methanol from the equiUbrium as it is formed. Air Products and others have developed a process that accomplishes this objective by dehydration of methanol to dimethyl ether [115-10-6]. Testing by Air Products at the pilot faciUty in LaPorte has demonstrated a 40% improvement in conversion. The reaction is similar to the Hquid-phase methanol process except that a soHd acid dehydration catalyst is added to the copper-based methanol catalyst slurried in an inert hydrocarbon Hquid (26). [Pg.165]

The chemical complex includes the methanol plant, methyl acetate plant, and acetic anhydride plant. The methanol plant uses the Lurgi process for hydrogenation of CO over a copper-based catalyst. The plant is capable of producing 165,000 t/yr of methanol. The methyl acetate plant converts this methanol, purchased methanol, and recovered acetic acid from other Eastman processes into approximately 440,000 t/yr of methyl acetate. [Pg.167]

Anhydrous, monomeric formaldehyde is not available commercially. The pure, dry gas is relatively stable at 80—100°C but slowly polymerizes at lower temperatures. Traces of polar impurities such as acids, alkahes, and water greatly accelerate the polymerization. When Hquid formaldehyde is warmed to room temperature in a sealed ampul, it polymerizes rapidly with evolution of heat (63 kj /mol or 15.05 kcal/mol). Uncatalyzed decomposition is very slow below 300°C extrapolation of kinetic data (32) to 400°C indicates that the rate of decomposition is ca 0.44%/min at 101 kPa (1 atm). The main products ate CO and H2. Metals such as platinum (33), copper (34), and chromia and alumina (35) also catalyze the formation of methanol, methyl formate, formic acid, carbon dioxide, and methane. Trace levels of formaldehyde found in urban atmospheres are readily photo-oxidized to carbon dioxide the half-life ranges from 35—50 minutes (36). [Pg.491]

Formaldehyde is readily reduced to methanol by hydrogen over many metal and metal oxide catalysts. It is oxidized to formic acid or carbon dioxide and water. The Cannizzaro reaction gives formic acid and methanol. Similarly, a vapor-phase Tischenko reaction is catalyzed by copper (34) and boric acid (38) to produce methyl formate ... [Pg.491]

Silver Catalyst Process. In early formaldehyde plants methanol was oxidized over a copper catalyst, but this has been almost completely replaced with silver (75). The silver-catalyzed reactions occur at essentially atmospheric pressure and 600 to 650°C (76) and can be represented by two simultaneous reactions ... [Pg.493]

There are some chemicals that can be made economically from coal or coal-derived substances. Methanol and CO are used to make acetic anhydride and acetic acid. Methanol itself can be made from synthesis gas over a copper-2inc catalyst (see Feedstocks, coal chemicals). [Pg.366]

Catalysts. Iodine and its compounds ate very active catalysts for many reactions (133). The principal use is in the production of synthetic mbber via Ziegler-Natta catalysts systems. Also, iodine and certain iodides, eg, titanium tetraiodide [7720-83-4], are employed for producing stereospecific polymers, such as polybutadiene mbber (134) about 75% of the iodine consumed in catalysts is assumed to be used for polybutadiene and polyisoprene polymeri2a tion (66) (see RUBBER CHEMICALS). Hydrogen iodide is used as a catalyst in the manufacture of acetic acid from methanol (66). A 99% yield as acetic acid has been reported. In the heat stabiH2ation of nylon suitable for tire cordage, iodine is used in a system involving copper acetate or borate, and potassium iodide (66) (see Tire cords). [Pg.366]

Because the synthesis reactions are exothermic with a net decrease in molar volume, equiUbrium conversions of the carbon oxides to methanol by reactions 1 and 2 are favored by high pressure and low temperature, as shown for the indicated reformed natural gas composition in Figure 1. The mechanism of methanol synthesis on the copper—zinc—alumina catalyst was elucidated as recentiy as 1990 (7). For a pure H2—CO mixture, carbon monoxide is adsorbed on the copper surface where it is hydrogenated to methanol. When CO2 is added to the reacting mixture, the copper surface becomes partially covered by adsorbed oxygen by the reaction C02 CO + O (ads). This results in a change in mechanism where CO reacts with the adsorbed oxygen to form CO2, which becomes the primary source of carbon for methanol. [Pg.275]

Equipment for storing and handling methanol may be made of carbon or stainless steel. Methanol is aggressive toward copper, zinc, magnesium, tin, lead, and alurninum, which should therefore be avoided. Gasket materials must also be chosen carefiiUy, because some elastomers swell and deteriorate when exposed to methanol. Similarly, the use of plastics for storage is not recommended. [Pg.280]

A AlI lation. A number of methods are available for preparation of A/-alkyl and A[,A/-dialkyl derivatives of aromatic amines. Passing a mixture of aniline and methanol over a copper—zinc oxide catalyst at 250°C and 101 kPa (1 atm) reportedly gives /V-methylaniline [100-61-8] in 96% yield (1). Heating aniline with methanol under pressure or with excess methanol produces /V, /V-dimethylaniline [121 -69-7] (2,3). [Pg.229]

The Guerbet reaction can be used to obtain higher alcohols 2-propyl-1-heptanol [10042-59-8] from 1-pentanol condensation and 6-methyl-4-nonanol from 2-pentanol (80—83). Condensations with alkah phenolates as the base, instead of copper catalyst, produce lower amounts of carboxyhc acids and requke lower reaction temperatures (82,83). The crossed Guerbet reaction of 1-pentanol with methanol in the presence of sodium methoxide catalyst afforded 2-heptanol in selectivities of about 75% (84). [Pg.373]

Silane reacts with methanol at room temperature to produce methoxymonosilanes such as Si(OCH2)4 [78-10-4] HSi(OCH2)3, and H2Si(OCH3)2 [5314-52-3] but not H SiOCH [2171 -96-2] (23). The reaction is catalyzed by copper metal. In the presence of alkoxide ions, SiH reacts with various alcohols, except CH OH, to produce tetraalkoxysHanes and hydrogen (24). [Pg.22]

Stannous Oxide. Stannous oxide, SnO ((tin(II) oxide), mol wt 134.70, sp gr 6.5) is a stable, blue-black, crystalline product that decomposes at above 385°C. It is insoluble in water or methanol, but is readily soluble in acids and concentrated alkaHes. It is generally prepared from the precipitation of a stannous oxide hydrate from a solution of stannous chloride with alkaH. Treatment at controUed pH in water near the boiling point converts the hydrate to the oxide. Stannous oxide reacts readily with organic acids and mineral acids, which accounts and for its primary use as an intermediate in the manufacture of other tin compounds. Minor uses of stannous oxide are in the preparation of gold—tin and copper—tin mby glass. [Pg.65]

The most common chromatogram in the distilled spirits industry is the fusel oil content. This consists of / -propyl alcohol, isobutyl alcohol, and isoamyl alcohol. Other common peaks are ethyl acetate, acetaldehyde, and methanol. The gc columns may be steel, copper, or glass packed column or capillary columns. Additional analyses include deterrninations of esters, total acids, fixed acids, volatile acids, soHds or extracts (used to determine... [Pg.88]

High pressure processes P > 150 atm) are catalyzed by copper chromite catalysts. The most widely used process, however, is the low pressure methanol process that is conducted at 503—523 K, 5—10 MPa (50—100 atm), space velocities of 20, 000-60,000 h , and H2-to-CO ratios of 3. The reaction is catalyzed by a copper—zinc oxide catalyst using promoters such as alumina (31,32). This catalyst is more easily poisoned than the older copper chromite catalysts and requites the use of sulfiir-free synthesis gas. [Pg.51]

The U.S. Department of Energy has funded a research program to develop the Hquid-phase methanol process (LPMEOH) (33). This process utilizes a catalyst such as copper—zinc oxide suspended in a hydrocarbon oil. The Hquid phase is used as a heat-transfer medium and allows the reaction to be conducted at higher conversions than conventional reactor designs. In addition, the use of the LPMEOH process allows the use of a coal-derived, CO-rich synthesis gas. Typical reactor conditions for this process are 3.5—6.3 MPa (35—60 atm) and 473—563 K (see Methanol). [Pg.51]

Dimethyl carbonate [616-38-6] and dimethyl oxalate [553-90-2] are both obtained from carbon monoxide, oxygen, and methanol at 363 K and 10 MPa (100 atm) or less. The choice of catalyst is critical cuprous chloride (66) gives the carbonate (eq. 20) a palladium chloride—copper chloride mixture (67,68) gives the oxalate, (eq. 21). Anhydrous conditions should be maintained by removing product water to minimize the formation of by-product carbon dioxide. [Pg.53]

In the presence of metallic copper, metallic silver, or a copper-silver alloy used in the form of gauze or as metal deposited on a low surface area inert support, methanol can be dehydrogenated to formaldehyde at 400—500°C. [Pg.198]

Only recently has a mechanism been proposed for the copper-cataly2ed reaction that is completely satisfactory (58). It had been known for many years that a small amount of carbon dioxide in the feed to the reactor is necessary for optimum yield, but most workers in the field beHeved that the main reaction in the formation of methanol was the hydrogenation of carbon monoxide. Now, convincing evidence has been assembled to indicate that methanol is actually formed with >99% selectivity by the reaction of dissociated, adsorbed hydrogen and carbon dioxide on the metallic copper surface in two steps ... [Pg.199]

Cupric chloride or copper(II) chloride [7447-39 ], CUCI2, is usually prepared by dehydration of the dihydrate at 120°C. The anhydrous product is a dehquescent, monoclinic yellow crystal that forms the blue-green orthohombic, bipyramidal dihydrate in moist air. Both products are available commercially. The dihydrate can be prepared by reaction of copper carbonate, hydroxide, or oxide and hydrochloric acid followed by crystallization. The commercial preparation uses a tower packed with copper. An aqueous solution of copper(II) chloride is circulated through the tower and chlorine gas is sparged into the bottom of the tower to effect oxidation of the copper metal. Hydrochloric acid or hydrogen chloride is used to prevent hydrolysis of the copper(II) (11,12). Copper(II) chloride is very soluble in water and soluble in methanol, ethanol, and acetone. [Pg.253]

Hydrolysis of chlorophyll using sodium hydroxide produces the moderately water-soluble sodium salts of chlorophyllin, phytol and methanol (145). The magnesium ia chlorophyllin may be replaced by copper. The sodium copper chlorophyllin salt is heat stable, and is ideal for coloring foods where heat is iavolved, such as ia canning (146). [Pg.406]

One process (182) esterifi.es the acetic acid with ethanol (or methanol) and then converts the ester to alcohol by hydrogenolysis in the vapor phase over a copper—2inc catalyst. [Pg.408]


See other pages where Copper methanol is mentioned: [Pg.59]    [Pg.874]    [Pg.59]    [Pg.874]    [Pg.163]    [Pg.130]    [Pg.945]    [Pg.321]    [Pg.335]    [Pg.67]    [Pg.69]    [Pg.447]    [Pg.165]    [Pg.165]    [Pg.100]    [Pg.415]    [Pg.160]    [Pg.505]    [Pg.506]    [Pg.528]    [Pg.29]    [Pg.199]    [Pg.258]    [Pg.103]    [Pg.120]   
See also in sourсe #XX -- [ Pg.260 , Pg.261 , Pg.262 , Pg.263 , Pg.264 , Pg.265 , Pg.266 ]

See also in sourсe #XX -- [ Pg.352 , Pg.353 , Pg.354 , Pg.355 , Pg.357 , Pg.358 , Pg.360 , Pg.361 , Pg.364 , Pg.365 , Pg.379 ]




SEARCH



Copper catalysis methanol

Copper catalysts, for methanol synthesis

Copper methanol dehydrogenation

Copper zinc oxide catalysts—methanol synthesis

Copper/zinc methanol catalyst

Dehydrogenation, methanol over copper

Methanol copper-zinc-alumina catalyst

Methanol over Copper Ion-Exchanged TSM

Methanol synthesis copper oxide catalysts

Methanol, copper salt

© 2024 chempedia.info