Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereospecific polymer

See optical isomer enantiomer asymmetry polymer, stereospecific Ziegler catalyst geometric isomer. [Pg.1178]

There have been numerous formulations of the metalloeene catalysts in the last 20 years. Table 3.4 presents a few examples of metallocene catalyst systems of interest (see all preceding references) [58-66]. It can be seen that earlier efforts were focused on catalyst efficiency and polymer stereospecificity. More recently, some interests seemed to have turned to syndiotactic polypropylene for various polymer and fiber properties. [Pg.154]

Catalysts. Iodine and its compounds ate very active catalysts for many reactions (133). The principal use is in the production of synthetic mbber via Ziegler-Natta catalysts systems. Also, iodine and certain iodides, eg, titanium tetraiodide [7720-83-4], are employed for producing stereospecific polymers, such as polybutadiene mbber (134) about 75% of the iodine consumed in catalysts is assumed to be used for polybutadiene and polyisoprene polymeri2a tion (66) (see RUBBER CHEMICALS). Hydrogen iodide is used as a catalyst in the manufacture of acetic acid from methanol (66). A 99% yield as acetic acid has been reported. In the heat stabiH2ation of nylon suitable for tire cordage, iodine is used in a system involving copper acetate or borate, and potassium iodide (66) (see Tire cords). [Pg.366]

TiCl catalysts produced by the reduction of TiCl with Al(C2H 2d> subsequentiy treated first with an electron donor (diisoamyl ether), then with TiCl, are highly stereospecific and four to five times more active than d-TiCl (6). These catalysts were a significant advance over the earlier TiCl systems, because removal of atactic polymer was no longer required. They are often referred to as second-generation catalysts. The life of many older slurry process faciUties has been extended by using these catalysts to produce "clean" polymers with very low catalyst residues. [Pg.410]

Montedison and Mitsui Petrochemical iatroduced MgCl2-supported high yield catalysts ia 1975 (7). These third-generation catalyst systems reduced the level of corrosive catalyst residues to the extent that neutralization or removal from the polymer was not required. Stereospecificity, however, was iasufficient to eliminate the requirement for removal of the atactic polymer fraction. These catalysts are used ia the Montedison high yield slurry process (Fig. 9), which demonstrates the process simplification achieved when the sections for polymer de-ashing and separation and purification of the hydrocarbon diluent and alcohol are eliminated (121). These catalysts have also been used ia retrofitted RexaH (El Paso) Hquid monomer processes, eliminating the de-ashing sections of the plant (Fig. 10) (129). [Pg.415]

In the mid-1950s, the Nobel Prize-winning work of K. Ziegler and G. Natta introduced anionic initiators which allowed the stereospecific polymerization of isoprene to yield high cis-1,4 stmcture (3,4). At almost the same time, another route to stereospecific polymer architecture by organometaHic compounds was aimounced (5). [Pg.493]

Another important use of BCl is as a Ftiedel-Crafts catalyst ia various polymerisation, alkylation, and acylation reactions, and ia other organic syntheses (see Friedel-Crafts reaction). Examples include conversion of cyclophosphasenes to polymers (81,82) polymerisation of olefins such as ethylene (75,83—88) graft polymerisation of vinyl chloride and isobutylene (89) stereospecific polymerisation of propylene (90) copolymerisation of isobutylene and styrene (91,92), and other unsaturated aromatics with maleic anhydride (93) polymerisation of norhornene (94), butadiene (95) preparation of electrically conducting epoxy resins (96), and polymers containing B and N (97) and selective demethylation of methoxy groups ortho to OH groups (98). [Pg.224]

This conceptual link extends to surfaces that are not so obviously similar in stmcture to molecular species. For example, the early Ziegler catalysts for polymerization of propylene were a-TiCl. Today, supported Ti complexes are used instead (26,57). These catalysts are selective for stereospecific polymerization, giving high yields of isotactic polypropylene from propylene. The catalytic sites are beheved to be located at the edges of TiCl crystals. The surface stmctures have been inferred to incorporate anion vacancies that is, sites where CL ions are not present and where TL" ions are exposed (66). These cations exist in octahedral surroundings, The polymerization has been explained by a mechanism whereby the growing polymer chain and an adsorbed propylene bonded cis to it on the surface undergo an insertion reaction (67). In this respect, there is no essential difference between the explanation of the surface catalyzed polymerization and that catalyzed in solution. [Pg.175]

Polymerizations catalyzed with coordination compounds are becoming more important for obtaining polymers with special properties (linear and stereospecific). The first linear polyethylene polymer was prepared from a mixture of triethylaluminum and titanium tetrachloride (Ziegler catalyst) in the early 1950s. Later, Natta synthesized a stereoregular polypropylene with a Ziegler-type catalyst. These catalyst combinations are now called Zieglar-Natta catalysts. [Pg.309]

A different situation arises when one considers a stereospecific catalyst which is endowed with optical activity and which favors therefore a specific configuration. Such a catalyst, if highly stereospecific, should form polymers, for example of all d configuration with an occasional inclusion here and there of l units. Of course if a racemic mixture of such a catalyst is used, then formation of a racemic mixture of polymers is expected, each polymeric molecule having an all d configuration incrusted with l units or an all l configuration incrusted with d units. [Pg.167]

Polymerization of butadiene and of isoprene confronts us with still another configurational problem. The addition may take place in either the 1,2 or 1,4 positions (with an additional possibility of 3,4 addition in the case of isoprene), and, moreover, in the 1,4 addition the new unit may acquire a cis or a trans configuration. It is known that by proper choice of a catalyst and by judicious adjustment of polymerization conditions processes can be developed which yield polymers of high stereospecificity, namely all 1,4 cis, all 1,4 trans, all 1,2 isotactic, or all 1,2 syndiotactic polymers. [Pg.169]

The structure of the chain, i.e., whether it is a helix or a random coil, might influence not only the rate but also the stereospecificity of the growing polymer. For example, it is plausible to expect that in normal vinyl polymerization helix formation might favor specific placement, say isotactic, while either placement would be approximately equally probable in a growing random coil. Formation of a helix requires interaction between polymer segments, and this intramolecular interaction is enhanced by bad solvents particularly those which precipitate the polymer. [Pg.172]

Spin orbitals, 258, 277, 279 Square well potential, in calculation of thermodynamic quantities of clathrates, 33 Stability of clathrates, 18 Stark effect, 378 Stark patterns, 377 Statistical mechanics base, clathrates, 5 Statistical model of solutions, 134 Statistical theory for clathrates, 10 Steam + quartz system, 99 Stereoregular polymers, 165 Stereospecificity, 166, 169 Steric hindrance, 376, 391 Steric repulsion, 75, 389, 390 Styrene methyl methacrylate polymer, 150... [Pg.411]


See other pages where Stereospecific polymer is mentioned: [Pg.228]    [Pg.107]    [Pg.246]    [Pg.1014]    [Pg.1015]    [Pg.1178]    [Pg.1178]    [Pg.1178]    [Pg.1199]    [Pg.6794]    [Pg.461]    [Pg.59]    [Pg.228]    [Pg.107]    [Pg.246]    [Pg.1014]    [Pg.1015]    [Pg.1178]    [Pg.1178]    [Pg.1178]    [Pg.1199]    [Pg.6794]    [Pg.461]    [Pg.59]    [Pg.44]    [Pg.1294]    [Pg.19]    [Pg.238]    [Pg.227]    [Pg.411]    [Pg.506]    [Pg.175]    [Pg.530]    [Pg.4]    [Pg.157]    [Pg.37]    [Pg.210]    [Pg.238]    [Pg.163]    [Pg.277]    [Pg.166]    [Pg.166]    [Pg.167]    [Pg.173]    [Pg.173]    [Pg.61]    [Pg.65]    [Pg.65]    [Pg.66]    [Pg.75]   
See also in sourсe #XX -- [ Pg.17 , Pg.186 , Pg.268 ]

See also in sourсe #XX -- [ Pg.17 , Pg.186 , Pg.268 ]




SEARCH



Polymers stereospecific polymerization

© 2024 chempedia.info