Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon feed gases

Other components in the feed gas may react with and degrade the amine solution. Many of these latter reactions can be reversed by appHcation of heat, as in a reclaimer. Some reaction products cannot be reclaimed, however. Thus to keep the concentration of these materials at an acceptable level, the solution must be purged and fresh amine added periodically. The principal sources of degradation products are the reactions with carbon dioxide, carbonyl sulfide, and carbon disulfide. In refineries, sour gas streams from vacuum distillation or from fluidized catalytic cracking (FCC) units can contain oxygen or sulfur dioxide which form heat-stable salts with the amine solution (see Fluidization Petroleum). [Pg.211]

As in the case of the salt complexation processes, the cryogenic systems require prepuriftcation of the feed gas. Bulk water, hydrogen sulfide, and carbon dioxide are removed by standard techniques. Final removal of these materials is accompHshed by adsorption. After prepuriftcation, the gases are ready for cryogenic processing. [Pg.55]

The carbon monoxide product is removed from the top of the column and warmed against recycled high pressure product. The warm low pressure stream is compressed, and the bulk of it is recycled to the system for process use as a reboder medium and as the reflux to the carbon monoxide column the balance is removed as product. The main impurity in the stream is nitrogen from the feed gas. Carbon monoxide purities of 99.8% are commonly obtained from nitrogen-free feedstocks. [Pg.57]

A flow diagram for the system is shown in Figure 5. Feed gas is dried, and ammonia and sulfur compounds are removed to prevent the irreversible buildup of insoluble salts in the system. Water and soHds formed by trace ammonia and sulfur compounds are removed in the solvent maintenance section (96). The pretreated carbon monoxide feed gas enters the absorber where it is selectively absorbed by a countercurrent flow of solvent to form a carbon monoxide complex with the active copper salt. The carbon monoxide-rich solution flows from the bottom of the absorber to a flash vessel where physically absorbed gas species such as hydrogen, nitrogen, and methane are removed. The solution is then sent to the stripper where the carbon monoxide is released from the complex by heating and pressure reduction to about 0.15 MPa (1.5 atm). The solvent is stripped of residual carbon monoxide, heat-exchanged with the stripper feed, and pumped to the top of the absorber to complete the cycle. [Pg.57]

The carbon monoxide purity from the Cosorb process is very high because physically absorbed gases are removed from the solution prior to the low pressure stripping column. Furthermore, there is no potential for oxidation of absorbed carbon monoxide as ia the copper—Hquor process. These two factors lead to the production of very high purity carbon monoxide, 99+ %. Feed impurities exit with the hydrogen-rich tail gas therefore, the purity of this coproduct hydrogen stream depends on the impurity level ia the feed gas. [Pg.58]

The Shawinigan process uses a unique reactor system (36,37). The heart of the process is the fluohmic furnace, a fluidized bed of carbon heated to 1350—1650°C by passing an electric current between carbon electrodes immersed in the bed. Feed gas is ammonia and a hydrocarbon, preferably propane. High yield and high concentration of hydrogen cyanide in the off gas are achieved. This process is presently practiced in Spain, AustraUa, and South Africa. [Pg.377]

Experience in air separation plant operations and other ciyogenic processing plants has shown that local freeze-out of impurities such as carbon dioxide can occur at concentrations well below the solubihty limit. For this reason, the carbon dioxide content of the feed gas sub-jec t to the minimum operating temperature is usually kept below 50 ppm. The amine process and the molecular sieve adsorption process are the most widely used methods for carbon dioxide removal. The amine process involves adsorption of the impurity by a lean aqueous organic amine solution. With sufficient amine recirculation rate, the carbon dioxide in the treated gas can be reduced to less than 25 ppm. Oxygen is removed by a catalytic reaction with hydrogen to form water. [Pg.1134]

The chapter by Haynes et al. describes the pilot work using Raney nickel catalysts with gas recycle for reactor temperature control. Gas recycle provides dilution of the carbon oxides in the feed gas to the methanator, hence simulating methanation of dilute CO-containing gases which under adiabatic conditions gives a permissible temperature rise. This and the next two papers basically treat this approach, the hallmark of first-generation methanation processes. [Pg.8]

The heats of these reactions (2, 3) (Figure 1) indicate that all the reactions are exothermic over the cited range of conditions. For example, the heat liberated under typical reaction conditions for the conversion of CO to methane is 52,730 cal/mole CO that for carbon dioxide is 43,680 cal/mole. Such high heats of reaction cannot be absorbed by the process stream in an adiabatic reactor unless the CO and/or C02 conversion is limited to less than about 2.5 moles/100 moles feed gas. Since... [Pg.12]

Carbon Laydown. The potential for carbon laydown is readily estimated from the thermodynamics of Reactions 4 and 5. The areas where carbon laydown, according to these reactions, is thermodynamically possible were developed by Gruber (36). It is readily seen that carbon laydown via Reaction 4 is thermodynamically favorable at the reactor inlet for practically any commercially conceivable feed gas composition. As noted by Gruber (36), carbon laydown is thermodynamically unfavorable at the reactor outlet for practically all commercially conceivable methanator conditions. The methanation reactor will therefore, in practice, have two zones—the first is a finite zone between the inlet and some way down the catalyst bed where carbon laydown is thermodynamically possible, and the second zone is the balance of the reactor. [Pg.28]

It was shown in laboratory studies that methanation activity increases with increasing nickel content of the catalyst but decreases with increasing catalyst particle size. Increasing the steam-to-gas ratio of the feed gas results in increased carbon monoxide shift conversion but does not affect the rate of methanation. Trace impurities in the process gas such as H2S and HCl poison the catalyst. The poisoning mechanism differs because the sulfur remains on the catalyst while the chloride does not. Hydrocarbons at low concentrations do not affect methanation activity significantly, and they reform into methane at higher levels, hydrocarbons inhibit methanation and can result in carbon deposition. A pore diffusion kinetic system was adopted which correlates the laboratory data and defines the rate of reaction. [Pg.56]

Alkanes and Alkenes. For this study, C150-1-01 and C150-1-03 were tested under primary wet gas conditions with ethylene, ethane, propylene, and propane being added to the feed gas. This study was made in order to determine whether these hydrocarbons would deposit carbon on the catalyst, would reform, or would pass through without reaction. The test was conducted using the dual-reactor heat sink unit with a water pump and vaporizer as the source of steam. All gas analyses were performed by gas chromatography. The test was stopped with the poisons still in the feed gas in order to preserve any carbon buildup which may have occurred on the catalysts. [Pg.67]

Four pilot plant experiments were conducted at 300 psig and up to 475°C maximum temperature in a 3.07-in. i.d. adiabatic hot gas recycle methanation reactor. Two catalysts were used parallel plates coated with Raney nickel and precipitated nickel pellets. Pressure drop across the parallel plates was about 1/15 that across the bed of pellets. Fresh feed gas containing 75% H2 and 24% CO was fed at up to 3000/hr space velocity. CO concentrations in the product gas ranged from less than 0.1% to 4%. Best performance was achieved with the Raney-nickel-coated plates which yielded 32 mscf CHh/lb Raney nickel during 2307 hrs of operation. Carbon and iron deposition and nickel carbide formation were suspected causes of catalyst deactivation. [Pg.96]

The space velocity was varied from 2539 to 9130 scf/hr ft3 catalyst. Carbon monoxide and ethane were at equilibrium conversion at all space velocities however, some carbon dioxide breakthrough was noticed at the higher space velocities. A bed of activated carbon and zinc oxide at 149 °C reduced the sulfur content of the feed gas from about 2 ppm to less than 0.1 ppm in order to avoid catalyst deactivation by sulfur poisoning. Subsequent tests have indicated that the catalyst is equally effective for feed gases containing up to 1 mole % benzene and 0.5 ppm sulfur (5). These are the maximum concentrations of impurities that can be present in methanation section feed gases. [Pg.141]

In run 19, where considerable carbon monoxide conversion was obtained in both stages, the recycle ratio was 1.48 scf recycle gas per scf feed gas. Recycle ratios in the other tests varied from 1.14 to 1.30. The design recycle ratio is 1.67 for lignite coal feed with hydrogen/steam synthesis gas. [Pg.143]

L. Seglin I would like to take exception to that. If you look at the composition, not the equilibrium composition, but the composition of the feed gas in practically any of the methanation schemes I have seen around, there is enough CO to lay down carbon. You have a situation where at the feed point you can potentially lay down carbon. At the exit you are outside carbon laydown. So, some place in-between, for some significant space, there is sufficient carbon monoxide to form... [Pg.172]

Gal-Or and Hoelscher (G5) have recently developed a fast and simple transient-response method for the measurement of concentration and volumetric mass-transfer coefficients in gas-liquid dispersions. The method involves the use of a transient response to a step change in the composition of the feed gas. The resulting change in the composition of the liquid phase of the dispersion is measured by means of a Clark electrode, which permits the rapid and accurate analysis of oxygen or carbon dioxide concentrations in a gas, in blood, or in any liquid mixture. [Pg.303]

Fig. 30. Dependence of S02 removal on cycle split and period for a 178-g bed of either Centaur or BPL activated carbon with gas and liquid feed temperatures at 80°C, SV = 1000 h"1, and u, = 0.2 cm/s. (Figure reproduced from Lee et at., 1996a, with permission of the authors.)... Fig. 30. Dependence of S02 removal on cycle split and period for a 178-g bed of either Centaur or BPL activated carbon with gas and liquid feed temperatures at 80°C, SV = 1000 h"1, and u, = 0.2 cm/s. (Figure reproduced from Lee et at., 1996a, with permission of the authors.)...
Ethylene is to be converted by catalytic air oxidation to ethylene oxide. The air and ethylene are mixed in the ratio 10 1 by volume. This mixture is combined with a recycle stream and the two streams are fed to the reactor. Of the ethylene entering the reactor, 40% is converted to ethylene oxide, 20% is converted to carbon dioxide and water, and the rest does not react. The exit gases from the reactor are treated to remove substantially all of the ethylene oxide and water, and the residue recycled. Purging of the recycle is required to avoid accumulation of carbon dioxide and hence maintain a constant feed to the reactor. Calculate the ratio of purge to recycle if not more than 8% of the ethylene fed is lost in the purge. What will be the composition of the corresponding reactor feed gas ... [Pg.289]

In applications where Nafion is not suitable, at temperatures above 200 °C with feed gas heavily contaminated with CO and sulfur species, a phosphoric acid fuel cell (PAFC)-based concentrator has been effective [15]. Treating the gas shown in Table 1, a H2 product containing 0.2% CO, 0.5%CO2 and only 6 ppm H2S was produced. The anode electrode was formed from a catalyst consisting basically of Pt-alloy mixed with 50% PTFE on a support of Vulcan XC-72 carbon. The cathode was... [Pg.209]

This technology uses C02 as a feed gas for the production of carbon products with Etogas methanation plant (Figure 20), which are reactor systems for conversion of H2 and C02 to methane (synthetic natural gas). The produced gas is DVGW- and DIN-compliant synthetic natural gas and can be used directly, e.g., as a fuel for a CNG vehicle. [Pg.108]


See other pages where Carbon feed gases is mentioned: [Pg.146]    [Pg.386]    [Pg.498]    [Pg.501]    [Pg.341]    [Pg.210]    [Pg.54]    [Pg.55]    [Pg.55]    [Pg.56]    [Pg.329]    [Pg.457]    [Pg.314]    [Pg.267]    [Pg.52]    [Pg.119]    [Pg.132]    [Pg.135]    [Pg.137]    [Pg.153]    [Pg.160]    [Pg.153]    [Pg.565]    [Pg.722]    [Pg.155]    [Pg.308]    [Pg.331]    [Pg.268]    [Pg.271]    [Pg.958]    [Pg.50]   
See also in sourсe #XX -- [ Pg.2 , Pg.194 ]




SEARCH



Carbon gases

Carbonization gas

Feed gas

© 2024 chempedia.info