Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon dioxide calcium hydroxide

Carbon dioxide. Calcium hydroxide reacts readily with carbon dioxide in the absence of water at all temperatures below its dissociation temperature (equation 19.1). It should be noted that the reaction of quicklime with carbon dioxide below 300 °C only proceeds in the presence of calcium hydroxide. The water released by equation (19.1) is available to hydrate more calcium oxide (19.2), and thereby permits further carbonation to occur. [Pg.210]

Lime plaster Lime plaster is a mixture of calcium hydroxide and sand. With the presence of carbon dioxide, calcium hydroxide change into calcium carbonate (limestone). To make lime plaster, limestone is heated to produce... [Pg.204]

The Solvay process involves a series of partial reactions. The first step is calcination of calcium carbonate to form lime and CO2. Lime is converted to calcium hydroxide. The most crucial step of the process involves reacting brine solution with carbon dioxide and ammonia to produce sodium bicarbonate and ammonium chloride. Sodium bicarbonate converts to sodium carbonate. The calcium hydroxide and ammonium chloride react to form calcium chloride as the by-product. The partial reactions are shown below ... [Pg.862]

The formation of this easily deteeted calcium carbonate is the conclusive test for carbon dioxide. Usually a glass rod which has been dipped into lime water is held in the escaping gas, and if the lime water turns milky, this is a proof of the presence of carbon dioxide. Barium hydroxide acts the same as calcium hydroxide, and is sometimes used instead of the latter. [Pg.110]

The white solid oxides MjO and M 0 are formed by direct union of the elements. The oxides MjO and the oxides M"0 of calcium down to radium have ionic lattices and are all highly basic they react exothermically with water to give the hydroxides, with acids to give salts, and with carbon dioxide to give carbonates. For example... [Pg.129]

The carbon dioxide is removed by passage of the gas through a mixture of sodium and calcium hydroxides. Very pure carbon monoxide is produced by heating nickel tetracarbonyl (see p. 179) ... [Pg.178]

This carbon dioxide-free solution is usually treated in an external, weU-agitated liming tank called a "prelimer." Then the ammonium chloride reacts with milk of lime and the resultant ammonia gas is vented back to the distiller. Hot calcium chloride solution, containing residual ammonia in the form of ammonium hydroxide, flows back to a lower section of the distiller. Low pressure steam sweeps practically all of the ammonia out of the limed solution. The final solution, known as "distiller waste," contains calcium chloride, unreacted sodium chloride, and excess lime. It is diluted by the condensed steam and the water in which the lime was conveyed to the reaction. Distiller waste also contains inert soHds brought in with the lime. In some plants, calcium chloride [10045-52-4], CaCl, is recovered from part of this solution. Close control of the distillation process is requited in order to thoroughly strip carbon dioxide, avoid waste of lime, and achieve nearly complete ammonia recovery. The hot (56°C) mixture of wet ammonia and carbon dioxide leaving the top of the distiller is cooled to remove water vapor before being sent back to the ammonia absorber. [Pg.523]

Magnesium sulfate heptahydrate may be prepared by neutralization of sulfuric acid with magnesium carbonate or oxide, or it can be obtained directly from natural sources. It occurs abundantly as a double salt and can also be obtained from the magnesium salts that occur in brines used for the extraction of bromine (qv). The brine is treated with calcium hydroxide to precipitate magnesium hydroxide. Sulfur dioxide and air are passed through the suspension to yield magnesium sulfate (see Chemicals frombrine). Magnesium sulfate is a saline cathartic. [Pg.202]

Excess calcium hydroxide is precipitated by usiag carbon dioxide and the calcium carbonate, calcium hydroxide, and calcium phosphite are removed by filtration. The filtered solution is treated with an equivalent amount of sodium sulfate or sodium carbonate to precipitate calcium sulfate or carbonate. Sodium hypophosphite monohydrate [10039-56-2] is recovered upon concentration of the solution. Phosphinic acid is produced from the sodium salt by ion exchange (qv). The acid is sold as a 50 wt %, 30—32 wt %, or 10 wt % solution. The 30—32 wt % solution is sold as USP grade (Table 12) (63). Phosphinic acid and its salts are strong reduciag agents, especially ia alkaline solution (65). [Pg.375]

The selection of boiler-water treatment is also dependent on the type of cooling water. When cooling water reaches the boiler, various compounds precipitate before others. For instance, seawater contains considerable magnesium chloride. When the magnesium precipitates as the hydroxide, hydrochloric acid remains. In some lake waters, calcium carbonate is a significant impurity. When it reaches the boiler, carbon dioxide is driven off in the... [Pg.362]

Morta.r, Mortar, principally slaked lime and sand, sets because of the evaporation of water, the deposition of calcium hydroxide, and the absorption of water by the bricks or cement blocks, foUowed by hardening as a result of the absorption and reaction of carbon dioxide. [Pg.406]

It is also made by precipitation from dissolved calcium hydroxide and carbon dioxide. The natural ground calcium carbonate and the precipitated material compete industrially based primarily on particle size and the characteristics imparted to a product. [Pg.410]

Precipitated Calcium Carbonate. Precipitated calcium carbonate can be produced by several methods but only the carbonation process is commercially used in the United States. Limestone is calcined in a kiln to obtain carbon dioxide and quicklime. The quicklime is mixed with water to produce a milk-of-lime. Dry hydrated lime can also be used as a feedstock. Carbon dioxide gas is bubbled through the milk-of-lime in a reactor known as a carbonator. Gassing continues until the calcium hydroxide has been converted to the carbonate. The end point can be monitored chemically or by pH measurements. Reaction conditions determine the type of crystal, the size of particles, and the size distribution produced. [Pg.410]

Neutralization Acidic or basic wastewaters must be neutrahzed prior to discharge. If an industry produces both acidic and basic wastes, these wastes may be mixed together at the proper rates to obtain neutral pH levels. Equahzation basins can be used as neutralization basins. When separate chemical neutralization is required, sodium hydroxide is the easiest base material to handle in a hquid form and can be used at various concentrations for in-line neutralization with a minimum of equipment. Yet, lime remains the most widely used base for acid neutr zation. Limestone is used when reaction rates are slow and considerable time is available for reaction. Siilfuric acid is the primary acid used to neutralize high-pH wastewaters unless calcium smfate might be precipitated as a resmt of the neutralization reaction. Hydrochloric acid can be used for neutrahzation of basic wastes if sulfuric acid is not acceptable. For very weak basic waste-waters carbon dioxide can be adequate for neutralization. [Pg.2213]

Lime Soda. If carbon dioxide is in solution in water and calcium hydroxide is added, the resulting precipitation product is CaCO this can be removed by sedimentation. [Pg.156]

Hostomsky, J. and Jones, A.G., 1993c. Ibid., Modelling of calcium carbonate precipitation in the reaction between gaseous carbon dioxide and aqueous solution of calcium hydroxide. Indem. pp. 2055-2059. [Pg.309]

For the corrosion process to proceed, the corrosion cell must contain an anode, a cathode, an electrolyte and an electronic conductor. When a properly prepared and conditioned mud is used, it causes preferential oil wetting on the metal. As the metal is completely enveloped and wet by an oil environment that is electrically nonconductive, corrosion does not occur. This is because the electric circuit of the corrosion cell is interrupted by the absence of an electrolyte. Excess calcium hydroxide [Ca(OH)j] is added as it reacts with hydrogen sulfide and carbon dioxide if they are present. The protective layer of oil film on the metal is not readily removed by the oil-wet solids as the fluid circulates through the hole. [Pg.1336]

Carbon dioxide and calcium carbonate The effect of carbon dioxide is closely linked with the bicarbonate content. Normal carbonates are rarely found in natural waters but sodium bicarbonate is found in some underground supplies. Calcium bicarbonate is the most important, but magnesium bicarbonate may be present in smaller quantities in general, it may be regarded as having properties similar to those of the calcium compound except that on decomposition by heat it deposits magnesium hydroxide whereas calcium bicarbonate precipitates the carbonate. [Pg.350]

Calcium hydroxide leached from incompletely cured concrete causes serious corrosion of lead (see Section 9.3). This is because carbon dioxide reacts with the lime solution to form calcium carbonate, which is practically insoluble. Carbonate ions are therefore not available to form a passive film on the surface of the lead . Typically, thick layers of PbO are formed, which may show seasonal rings of litharge (tetragonal PbO) and massicot (orthorhombic PbO) . [Pg.730]

Saturated calcium hydroxide solution. Shake a large excess of finely divided calcium hydroxide vigorously with water at 25 °C, filter through a sintered glass filter (porosity 3) and store in a polythene bottle. Entrance of carbon dioxide into the solution should be avoided. The solution should be replaced if a turbidity develops. The solution is 0.0203M at 25 °C, 0.0211 M at 20°C, and 0.0195M at 30 °C. [Pg.570]

Both hot and cold processes are employed, although the hot process, which takes place at or above 212 °F (100 °C), is usually preferred for boiler FW applications, because it produces water of lower hardness levels and usually a lower silica content as well. Also, less lime is needed because the carbon dioxide with which it would normally react is driven off at the higher temperatures. Sometimes caustic soda (sodium hydroxide) is used in place of soda, depending on the alkalinity of the water and the chemical costs however, irrespective of the process or chemicals used, the major precipitants are always calcium carbonate and magnesium hydroxide. [Pg.311]

The product, calcium hydroxide, is commonly known as slaked lime because, as calcium hydroxide, the thirst of lime for water has been quenched (slaked). Slaked lime is the form in which lime is normally sold because quicklime can set fire to moist wood and paper. In fact, the wooden boats that were once used to transport quicklime sometimes caught fire in the heat of reaction when water seeped into their holds. An aqueous solution of calcium hydroxide, which is slightly soluble in water, is called lime water. It is used as a test for carbon dioxide, with which it reacts to form a suspension of the much less soluble calcium carbonate ... [Pg.716]

CARBONATATION The process of purifying juice by adding an excess of calcium hydroxide (lime) at 75°C and removing the surplus by precipitation with carbon dioxide and filtering the resulting calcium carbonate. [Pg.466]

Making paper without pollution requires that each part of the process be nonpolluting. The chemicals most commonly used in the production of pulp are NaOH and Na2 S. In modem paper mills, sulfur-containing by-products are scmbbed from the plant exhaust, and the aqueous sodium hydroxide is reclaimed and recycled. The fillers used to make paper opaque—titanium dioxide, calcium carbonate, and kaolin (a clay)—are natural, nonpolluting minerals. The polymer binders and sizers are relatively easy to recapture from the aqueous waste stream. [Pg.251]


See other pages where Carbon dioxide calcium hydroxide is mentioned: [Pg.278]    [Pg.84]    [Pg.580]    [Pg.756]    [Pg.84]    [Pg.133]    [Pg.144]    [Pg.204]    [Pg.237]    [Pg.299]    [Pg.517]    [Pg.858]    [Pg.163]    [Pg.293]    [Pg.216]    [Pg.163]    [Pg.143]    [Pg.96]    [Pg.813]    [Pg.222]    [Pg.31]    [Pg.716]    [Pg.299]    [Pg.517]    [Pg.858]   
See also in sourсe #XX -- [ Pg.204 ]




SEARCH



Calcium Dioxide

Calcium carbonate

Calcium carbonate carbon dioxide

Calcium hydroxide

Carbon dioxide hydroxide

Carbon hydroxide

Hydroxide carbonates

© 2024 chempedia.info