Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protection layer

Fn Fig. 2. it is shown, that the stress can be evaluated by placing the probe directly on the tested surface as well as at a certain distance from it. Test results indicate to the possibility of evaluating stress in parts covered with a protective layer (vanish or non-ferromagnetic electrolytic coating). [Pg.384]

Highly protective layers can also fonn in gaseous environments at ambient temperatures by a redox reaction similar to that in an aqueous electrolyte, i.e. by oxygen reduction combined with metal oxidation. The thickness of spontaneously fonned oxide films is typically in the range of 1-3 nm, i.e., of similar thickness to electrochemical passive films. Substantially thicker anodic films can be fonned on so-called valve metals (Ti, Ta, Zr,. ..), which allow the application of anodizing potentials (high electric fields) without dielectric breakdown. [Pg.2722]

The Artisan continuous filter operates at pressures from 150 to 200 kPa, it allows washing by iajection of washflquid after the initial filtering stages, and the sizes available range from 0.3 to 19 m. Abrasive wear on the cloth is claimed to be eliminated by the thin protective layer of cake on the medium. [Pg.412]

Nylon films are used in lamination or coated form to ensure heat sealabiHty and enhance barrier properties. The largest uses are as thermoforming webs for twin-web processed meat and cheese packagiag under vacuum or in an inert atmosphere. Other uses include bags for red meat, boil-ia-bags, bag-in-box for wine, and as the outer protective layer for aluminum foil in cookie and vacuum coffee packages. [Pg.452]

Layer Stacks and Protective Layers. The layer stack of an MO disk consists mainly of an MO layer, a dielectric antirefiection layer, and a metallic reflection layer (Fig. 14). The thickness of the antireflection layer as well as that of the MO layer have to be properly chosen to obtain a maximum magnetooptical figure-of-mefit (FOM). The FOM can be further increased by using a quadfilayer configuration with dielectric layers on both sides of the MO layer. Practical disks use the generalized configuration 50—120-nm dielectric layer, 25—90-nm MO layer, 17—70-nm dielectric layer (for quadfilayer configuration only), and 15—150-nm reflective layer. [Pg.148]

The birefringence of substrate materials for optical data storage devices requires special attention, especially in the case of EOD(MOR) disks. Birefringence has no importance for glass substrates (glass does not exhibit any significant birefringence) and is only a subordinate factor for polymeric protective layers of aluminum substrates because of their reflective read/write technique. [Pg.156]

Anodes. Lead—antimony (6—10 wt %) alloys containing 0.5—1.0 wt % arsenic have been used widely as anodes in copper, nickel, and chromium electrowinning and metal plating processes. Lead—antimony anodes have high strength and develop a corrosion-resistant protective layer of lead dioxide during use. Lead—antimony anodes are resistant to passivation when the current is frequendy intermpted. [Pg.57]

The essential protective film on the 2inc surface is that of basic 2inc carbonate, which forms in air in the presence of carbon dioxide and moisture (Fig. 1). If wet conditions predominate the normally formed 2inc oxide and 2inc hydroxide, called white mst, do not transform into a dense protective layer of adhesive basic 2inc carbonate. Rather the continuous growth of porous loosely adherent white mst consumes the 2inc then the steel msts. [Pg.130]

Siliconizing is yet another process used especially for coating of the refractory metals Ti, Nb, Ta, Cr, Mo, and W (see Refractories). These metals form siHcides which have a surface oxidation protection layer of Si02. Siliconizing is especially effective on molybdenum against air oxidation up to 1700°C. [Pg.136]

Stainless steel develops a passive protective layer (<5-nm thick) of chromium oxide [1118-57-3] which must be maintained or permitted to rebuild after it is removed by product flow or cleaning. The passive layer may be removed by electric current flow across the surface as a result of dissinulat metals being in contact. The creation of an electrolytic cell with subsequent current flow and corrosion has to be avoided in constmction. Corrosion may occur in welds, between dissimilar materials, at points under stress, and in places where the passive layer is removed it may be caused by food material, residues, cleaning solutions, and bmshes on material surfaces (see CORROSION AND CORROSION CONTROL). [Pg.361]

Coatings, Paints, and Pigments. Various slightly soluble molybdates, such as those of zinc, calcium, and strontium, provide long-term corrosion control as undercoatings on ferrous metals (90—92). The mechanism of action presumably involves the slow release of molybdate ion, which forms an insoluble ferric molybdate protective layer. This layer is insoluble in neutral or basic solution. A primary impetus for the use of molybdenum, generally in place of chromium, is the lower toxicity of the molybdenum compound. [Pg.477]

Phosphoms is stored and handled under a protective layer of water. Production quantities are transferred as a Hquid by either water displacement or pumps, with water recycle to maintain the water balance and cover. In earlier times, phosphoms was sometimes stored in underground tanks or pits, but as of the 1990s storage is limited to tanks located inside diked areas that are accessible on the outside for safety and leakage control. [Pg.352]

Caustic corrosion (gouging) occurs when caustic is concentrated and dissolves the protective magnetite (Fe O layer. Iron, in contact with the boiler water, forms magnetite and the protective layer is continuously restored. However, as long as a high caustic concentration exists, the magnetite is constantiy dissolved, causing a loss of base metal and eventual failure (Fig. 4). [Pg.262]

Deposition of a protective layer of crystalline CaCO has been proposed for protection of metallic surfaces against corrosion by using the natural calcium and alkalinity in water (36). [Pg.300]

Control of nitrogen oxides ia aircraft exhaust is of increa sing concern because nitrogen oxides react with ozone ia the protective layer of atmosphere which exists ia the altitude region where supersonic aircraft operate. Research is under way to produce a new type of combustor which minimizes NO formation. It is an essential component of the advanced propulsion unit needed for a successflil supersonic transport fleet. [Pg.414]

At high temperature, siUcon carbide exhibits either active or passive oxidation behavior depending on the ambient oxygen potential (65,66). When the partial pressure of oxygen is high, passive oxidation occurs and a protective layer of Si02 is formed on the surface. [Pg.466]

The final factor influencing the stabiHty of these three-phase emulsions is probably the most important one. Small changes in emulsifier concentration lead to drastic changes in the amounts of the three phases. As an example, consider the points A to C in Figure 16. At point A, with 2% emulsifier, 49% water, and 49% aqueous phase, 50% oil and 50% aqueous phase are the only phases present. At point B the emulsifier concentration has been increased to 4%. Now the oil phase constitutes 47% of the total and the aqueous phase is reduced to 29% the remaining 24% is a Hquid crystalline phase. The importance of these numbers is best perceived by a calculation of thickness of the protective layer of the emulsifier (point A) and of the Hquid crystal (point B). The added surfactant, which at 2% would add a protective film of only 0.07 p.m to emulsion droplets of 5 p.m if all of it were adsorbed, has now been transformed to 24% of a viscous phase. This phase would form a very viscous film 0.85 p.m thick. The protective coating is more than 10 times thicker than one from the surfactant alone because the thick viscous film contains only 7% emulsifier the rest is 75% water and 18% oil. At point C, the aqueous phase has now disappeared, and the entire emulsion consists of 42.3% oil and 57.5% Hquid crystalline phase. The stabilizing phase is now the principal part of the emulsion. [Pg.203]

By attempting to maintain process conditions at or near their design values, the process controls so attempt to prevent abnormal conditions from developing within the process. Although process controls can be viewed as a protective layer, this is really a by-product and not the primaiy func tion. Where the objective of a function is specifically to reduce risk, the implementation is normally not within the process controls. Instead, the implementation is within a separate system specifically provided to reduce risk. This system is generally referred to as the safety interlock system. [Pg.796]


See other pages where Protection layer is mentioned: [Pg.399]    [Pg.470]    [Pg.506]    [Pg.283]    [Pg.1908]    [Pg.510]    [Pg.208]    [Pg.434]    [Pg.144]    [Pg.146]    [Pg.148]    [Pg.157]    [Pg.170]    [Pg.130]    [Pg.131]    [Pg.132]    [Pg.132]    [Pg.361]    [Pg.173]    [Pg.27]    [Pg.246]    [Pg.113]    [Pg.323]    [Pg.90]    [Pg.191]    [Pg.289]    [Pg.213]    [Pg.505]    [Pg.505]    [Pg.505]    [Pg.505]    [Pg.505]    [Pg.283]   
See also in sourсe #XX -- [ Pg.203 ]

See also in sourсe #XX -- [ Pg.82 , Pg.85 , Pg.89 ]

See also in sourсe #XX -- [ Pg.49 , Pg.50 , Pg.51 ]




SEARCH



Protective layer

© 2024 chempedia.info