Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sintered glasses

Filter the product at the pump, using an alkali-resisting filter-paper, or a sintered glass filter-funnel. Wash the crystals on the filter with a small quantity of ethanol to remove the purple colour, and then drain thoroughly. [Pg.236]

Collecting the silver halide. Meanwhile assemble the apparatus shown in Fig. 91. G is a filter-funnel having a sintered glass filter-plate... [Pg.504]

The chief disadvantages of a Buchner funnel for filtration are (i) it is impossible to see whether the underside of the perforated plate is perfectly clean, and (ii) the larger sizes are top heavy. The first drawback is absent in the Jena slit-sieve funnel (Fig. 11,1, 7,/) this is an all-glass funnel provided with a sealed-in transparent plate, perforated by a series of angular slots, upon which the filter paper rests. The sintered glass... [Pg.133]

Filtration of corrosive liquids with suction. A strongly alkaline or acid suspension is best filtered through a sintered glass funnel. Alternatively, glass wool or asbestos may be plugged into the stem of a glass funnel or supported upon a Witt plate in a glass funnel. [Pg.135]

By inclining the flask A, applying suction at 3 and connecting 1 to a source of inert gas, the mother liquor may be drawn into the sintered glass funnel C without the... [Pg.135]

A simple apparatus for sublimation in a stream of air or of inert gas is shown in Fig. II, 45, 3.. d is a two-necked flask equipped with a narrow inlet tube B with stopcock and a wide tube C 12-15 inm. in diameter. The latter is fitted to a sintered glass crucible and the usual adapter and suction flask E. A well-fitting filter paper is placed on the sintered glass filter plate to collect any sublimate carried by the gas stream. [Pg.156]

Method 2 (from potassium bromide and sulphuric acid). Potassium bromide (240 g.) is dissolved in water (400 ml.) in a litre flask, and the latter is cooled in ice or in a bath of cold water. Concentrated sulphuric acid (180 ml.) is then slowly added. Care must be taken that the temperature does not rise above 75° otherwise a little bromine may be formed. The solution is cooled to room temperature and the potassium bisulphate, which has separated, is removed by flltration through a hardened Alter paper in a Buchner funnel or through a sintered glass funnel. The flltrate is distilled from a litre distilling flask, and the fraction b.p. 124 127° is collected this contains traces of sulphate. Pure constant boiling point hydrobromic acid is obtained by redistillation from a little barium bromide. The yield is about 285 g. or 85 per cent, of the theoretical. [Pg.187]

Solids by solvents. The various forms of Soxhlet apparatus illus trated in Section 11,44 can be purchased with ground glass joints. A simplified form, in which the fragile side tubes are absent, is shown in Fig. II, 58, 1. The material to be extracted, if of granular form, may rest upon a sintered glass disc or upon a removable septum ... [Pg.222]

Solution No. 2. Dissolve 60 g. of pure sodium hydroxide and 173 g. of pure Rochelle salt (sodium potassium tartrate) in water, filter if necessary through a sintered glass funnel, and make up the filtrate and washings to 500 ml. [Pg.330]

Method A. In a 500 ml. round-bottomed flask, fitted with a reflux condenser attached to a gas trap (Fig. II, 13, 8), place 59 g. of succinic acid and 117-5 g. (107-5 ml.) of redistilled acetyl chloride. Reflux the mixture gently upon a water bath until all the acid dissolves (1-2 hours). Allow the solution to cool undisturbed and finally cool in ice. Collect the succinic anhydride, which separates in beautiful crystals, on a Buchner or sintered glass funnel, wash it with two 40 ml. portions of anhydrous ether, and dry in a vacuum desiccator. The yield of succinic anhydride, m.p. 118-119°, is 47 g. [Pg.375]

Into a 1500 ml. round-bottomed flask place 97-5 g. of finely-powdered sodium cyanide (1), 125 ml. of water, and a few chips of porous porcelain. Attach a reflux condenser and warm on a water bath until all the sodium cyanide dissolves. Introduce a solution of 250 g. (196 ml.) of n-butyl bromide (Sections 111,35 and 111,37) in 290 ml. of pure methyl alcohol, and reflux gently on a water bath for 28-30 hours. Cool to room temperature and remove the sodium bromide which has separated by filtration through a sintered glass funnel at the pump wash the crystals with about 100 ml. of methyl alcohol. Transfer the filtrate and washings to From n caproamide by SOClj method. [Pg.408]

Heat a mixture of hexamethylene dicyaiiide with 15 times its weight of 50 per cent, sulphuric acid by weight under reflux for 10 hours. The acid crystallises out on cooling. Filter oflF the suberic acid upon a sintered glass funnel, and recrystallise it from acetone m.p. 141-142°. The yield is 90 per cent, of the theoretical. [Pg.492]

Pimelic acid. Heat a mixture of 18 g. of pentamethylene dicyanide and 250 g. of 50 per cent, sulphuric acid by weight in a 750 ml. round-bottomed flask under reflux for 9 hours. INIost of the pimehc acid separates from the cold reaction mixture. Filter oflF the crystaUine acid upon a sintered glass funnel. Saturate the filtrate with ammonium sulphate and extract it with three 50 ml. portions of ether. Dissolve the residue on the filter (which is shghtly discoloured, but is fairly pure pimehc acid) in the combined ethereal extracts, dry with anhydrous sodium or magnesium sulphate, and remove the ether by distiUation. Recrystallise the residual sohd acid from benzene containing 5 per cent, of ether. The yield of pure pimehc acid, m.p, 105-106°, is 22 g. [Pg.493]

Into a 500 ml. round-bottomed flask, fitted with a reflux condenser, place 42 g. of potassium hydroxide pellets and 120 g. (152 ml.) of absolute ethyl alcohol. Heat under reflux for 1 hour. Allow to cool and decant the liquid from the residual solid into another dry 500 ml. flask add 57 g. (45 ml.) of A.R. carbon dtsulphide slowly and with constant shaking. Filter the resulting almost solid mass, after cooling in ice, on a sintered glass funnel at the pump, and wash it with two 25 ml. portions of ether (sp. gr. 0-720), followed by 25 ml. of anhydrous ether. Dry the potassium ethyl xanthate in a vacuum desiccator over silica gel. The yield is 74 g. If desired, it ma be recrystallised from absolute ethyl alcohol, but this is usually unneceasary. [Pg.499]

Introduce 197 g. of anhydrous brucine or 215 g. of the air-dried dihydrate (4) into a warm solution of 139 g. of dZ-acc.-octyl hj drogen phthalate in 300 ml. of acetone and warm the mixture vmder reflux on a water bath until the solution is clear. Upon cooling, the brucine salt (dA, IB) separates as a crystalline solid. Filter this off on a sintered glass funnel, press it well to remove mother liquor, and wash it in the funnel with 125 ml. of acetone. Set the combined filtrate and washings (W) aside. Cover the crystals with acetone and add, slowly and with stirriug, a slight excess (to Congo red) of dilute hydrochloric acid (1 1 by volume about 60 ml.) if the solution becomes turbid before the introduction of... [Pg.506]

A gas distribution tube, provided with a sintered glass plate at its lower end. is to be preferred. [Pg.535]

It is better to employ a large sintered glass funnel for Altering the fluoborate can then be stirred well after each washing before suction is applied. [Pg.611]

Dissolve 34 g. of o-nitroaniline in a warm mixture of 63 ml. of concentrated hydrochloric acid and 63 ml. of water contained in a 600 ml. beaker. Place the beaker in an ice - salt bath, and cool to 0-5° whilst stirring mechanically the o-nitroaniline hydrochloride will separate in a finely-divided crystalline form. Add a cold solution of 18 g. of sodium nitrite in 40 ml. of water slowly and with stirring to an end point with potassium iodide - starch paper do not allow the temperature to rise above 5-7 . Introduce, whilst stirring vigorously, a solution of 40 g. of sodium borofluoride in 80 ml. of water. Stir for a further 10 minutes, and filter the solid diazonium fluoborate with suction on a sintered glass funnel. Wash it immediately once with 25 ml. of cold 5 per cent, sodium borofluoride solution, then twice with 15 ml. portions of rectified (or methylated) spirit and several times with ether in each washing stir... [Pg.612]

The crude o-phenylenediamine may be converted into the dihydrocliloride and the salt purified in the following manner. Dissolve it in 60 ml. of concentrated hydrochloric acid and 40 ml. of water containing 2 g. of stannous chloride, and treat the hot solution with 2-3 g. of decolourising carbon. Filter, add 100 ml. of concentrated hydrochloric acid to the hot colourless filtrate, and cool in a freezing mixture of ice and salt. Collect the colourless crystals of the dihydrochloride on a Buchner or sintered glass funnel, wash with a small volume of concentrated hydrochloric acid, and dry in a vacuum desiccator over sodium hydroxide. The yield is 61 g. [Pg.641]


See other pages where Sintered glasses is mentioned: [Pg.377]    [Pg.11]    [Pg.51]    [Pg.133]    [Pg.134]    [Pg.135]    [Pg.152]    [Pg.160]    [Pg.162]    [Pg.187]    [Pg.188]    [Pg.192]    [Pg.198]    [Pg.222]    [Pg.223]    [Pg.224]    [Pg.250]    [Pg.323]    [Pg.344]    [Pg.375]    [Pg.389]    [Pg.410]    [Pg.419]    [Pg.470]    [Pg.488]    [Pg.494]    [Pg.538]    [Pg.552]    [Pg.574]    [Pg.611]    [Pg.612]    [Pg.618]   
See also in sourсe #XX -- [ Pg.217 ]

See also in sourсe #XX -- [ Pg.491 ]

See also in sourсe #XX -- [ Pg.293 ]




SEARCH



Funnel, Buchner sintered glass

Funnels sintered glass

Membranes sintered glass

Powder glass sintering

Sealing-in sintered glass discs

Sintered apatite glass-ceramics

Sintered glass crucibles

Sintered glass-ceramics

© 2024 chempedia.info