Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon dioxide hydroxide

The white solid oxides MjO and M 0 are formed by direct union of the elements. The oxides MjO and the oxides M"0 of calcium down to radium have ionic lattices and are all highly basic they react exothermically with water to give the hydroxides, with acids to give salts, and with carbon dioxide to give carbonates. For example... [Pg.129]

With excess carbon dioxide, i,e, if the gas is passed through a solution of the hydroxide, a hydrogencarbonate is formed ... [Pg.130]

As with the hydroxides, we find that whilst the carbonates of most metals are insoluble, those of alkali metals are soluble, so that they provide a good source of the carbonate ion COf in solution the alkali metal carbonates, except that of lithium, are stable to heat. Group II carbonates are generally insoluble in water and less stable to heat, losing carbon dioxide reversibly at high temperatures. [Pg.132]

From the sodium aluminate solution, aluminium hydroxide is precipitated by passing in carbon dioxide ... [Pg.142]

Why is potassium aluminium sulphate not soluble in benzene A compound M has the composition C = 50.0% H=12.5%o A1 = 37.5%. 0.360 g of M reacts with an excess of water to evolve 0.336 1 of gas N and leave a white gelatinous precipitate R. R dissolves in aqueous sodium hydroxide and in hydrochloric acid. 20 cm of N require 40 cm of oxygen for complete combustion, carbon dioxide and water being the only products. Identify compounds N and R, suggest a structural formula for M, and write an equation for the reaction of M with water. (All gas volumes were measured at s.t.p.)... [Pg.159]

The carbon dioxide is removed by passage of the gas through a mixture of sodium and calcium hydroxides. Very pure carbon monoxide is produced by heating nickel tetracarbonyl (see p. 179) ... [Pg.178]

Carbon dioxide reacts with a solution of a metal hydroxide giving the carbonate, which may he precipitated, for example... [Pg.182]

Chill the concentrated solution of the amine hydrochloride in ice-water, and then cautiously with stirring add an excess of 20% aqueous sodium hydroxide solution to liberate the amine. Pour the mixture into a separating-funnel, and rinse out the flask or basin with ether into the funnel. Extract the mixture twice with ether (2 X25 ml.). Dry the united ether extracts over flake or powdered sodium hydroxide, preferably overnight. Distil the dry filtered extract from an apparatus similar to that used for the oxime when the ether has been removed, distil the amine slowly under water-pump pressure, using a capillary tube having a soda-lime guard - tube to ensure that only dry air free from carbon dioxide passes through the liquid. Collect the amine, b.p. 59-61°/12 mm. at atmospheric pressure it has b.p. 163-164°. Yield, 18 g. [Pg.226]

Hydrolysis. Ethyl acetoacetate when treated w ith cold dilute sodium hydroxide solution gives the sodium salt of acetoacetic acid. This acid is unstable, and readily breaks down into acetone and carbon dioxide it is of considerable... [Pg.270]

Nitrogen. To one portion of the filtrate, add z-3 ml. of 10, aqueous sodium hydroxide solution, then add about o-2 g. of ferrous sulphate and proceed as in the Lassaigiie nitrogen test (p, 322). Note, however, that the fiUal acidification with dilute siiphiiric acid must be made with care, owing to the vigorous evolution of carbon dioxide from the carbonate present. [Pg.327]

In a 250 ml. conical flask mix a solution of 14 g. of sodium hydroxide in 40 ml. of water and 21 g. (20 ml.) of pure benzaldehyde (Section IV,115). Add 15 g. of hydroxylamine hydrochloride in small portions, and shake the mixture continually (mechanical stirring may be employed with advantage). Some heat is developed and the benzaldehyde eventually disappears. Upon coohiig, a crystalline mass of the sodium derivative separates out. Add sufficient water to form a clear solution, and pass carbon dioxide into the solution until saturated. A colourless emulsion of the a or syn-aldoxime separates. Extract the oxime with ether, dry the extract over anhydrous magnesium or sodium sulphate, and remove the ether on a water bath. Distil the residue under diminished pressure (Fig. 11,20, 1). Collect the pure syn-benzaldoxime (a-benzald-oxime) at 122-124°/12 mm. this gradually solidifies on cooling in ice and melts at 35°. The yield is 12 g. [Pg.719]

Veratronitrile, Dissolve 83 g. of veratraldehyde in 200 ml. of warm rectified spirit in a 1 litre bolt-head flask, and add a warm solution of 42 g. of hydroxylamine hydrochloride in 50 ml. of water. Mix thoroughly and run in a solution of 30 g. of sodium hydroxide in 40 ml. of water. Allow the mixture to stand for 2-5 hours, add 250 g. of crushed ice, and saturate the solution with carbon dioxide. The aldoxime separates as an oil allow the mixture to stand for 12-24 hours in an ice chest or refrigerator when the oil will sohdify. Filter off the crystalline aldoxime at the pump, wash well with cold water, and dry in the air upon filter paper. The yield of veratraldoxime is 88 g. [Pg.804]

Nitrogen. Treat one portion with 1-2 ml. of 5 per cent, sodium hydroxide solution and 0 1 g. of powdered ferrous sidphate. Boil for 1 minute and cool. Cautiously acidify with dilute sulphuric acid (carbon dioxide is evolved). A precipitate of Prussian blue indicates that nitrogen is present. [Pg.1045]

Recall that the carbon atom of carbon dioxide bears a partial positive charge because of the electron attracting power of its attached oxygens When hydroxide ion (the Lewis base) bonds to this positively polarized carbon a pair of electrons in the carbon-oxygen double bond leaves carbon to become an unshared pair of oxygen... [Pg.47]

The plant incorporating the air cathode electrolyzer must include a high performance air scmbbing system to eliminate carbon dioxide from the air. Failure to remove CO2 adequately results in the precipitation of sodium carbonate in the pores of the cathode this, in turn, affects the transport of oxygen and hydroxide within the electrode. Left unchecked, the accumulation of sodium carbonate will cause premature failure of the cathodes. [Pg.500]

Recovery of Ammonia. The filter Hquor contains unreacted sodium chloride and substantially all the ammonia with which the brine was originally saturated. The ammonia may be fixed or free. Fixed ammonia (ammonium chloride [12125-02-97]) corresponds stoichiometrically to the precipitated sodium bicarbonate. Free ammonia includes salts such as ammonium hydroxide, bicarbonate, and carbonate, and the several possible carbon—ammonia compounds that decompose at moderate temperatures. A sulfide solution may be added to the filter Hquor for corrosion protection. The sulfide is distilled for eventual absorption by the brine in the absorber. As the filter Hquor enters the distiller, it is preheated by indirect contact with departing gases. The warmed Hquor enters the main coke, tile, or bubble cap-fiUed sections of the distiller where heat decomposes the free ammonium compounds and steam strips the ammonia and carbon dioxide from the solution. [Pg.523]

This carbon dioxide-free solution is usually treated in an external, weU-agitated liming tank called a "prelimer." Then the ammonium chloride reacts with milk of lime and the resultant ammonia gas is vented back to the distiller. Hot calcium chloride solution, containing residual ammonia in the form of ammonium hydroxide, flows back to a lower section of the distiller. Low pressure steam sweeps practically all of the ammonia out of the limed solution. The final solution, known as "distiller waste," contains calcium chloride, unreacted sodium chloride, and excess lime. It is diluted by the condensed steam and the water in which the lime was conveyed to the reaction. Distiller waste also contains inert soHds brought in with the lime. In some plants, calcium chloride [10045-52-4], CaCl, is recovered from part of this solution. Close control of the distillation process is requited in order to thoroughly strip carbon dioxide, avoid waste of lime, and achieve nearly complete ammonia recovery. The hot (56°C) mixture of wet ammonia and carbon dioxide leaving the top of the distiller is cooled to remove water vapor before being sent back to the ammonia absorber. [Pg.523]

Significant amounts of cryoHte are also recovered from waste material ia the manufacture of aluminum. The carbon lining of the electrolysis ceUs, which may contain 10—30% by weight of cryoHte, is extracted with sodium hydroxide or sodium carbonate solution and the cryoHte precipitated with carbon dioxide (28). Gases from operating ceUs containing HF, CO2, and fluorine-containing dusts may be used for the carbonation (29). [Pg.144]

Magnesium oxide is an effective nonsystemic antacid, ie, it is converted to the hydroxide. It does not neutralize gastric acid excessively nor does it hberate carbon dioxide. The light form is preferable to the heavy for adininistration in Hquids because it is suspended more readily. One gram of magnesium oxide neutralizes 87 mL of 0.1 NUCl in 10 min, and 305 mL in 2 h. [Pg.200]


See other pages where Carbon dioxide hydroxide is mentioned: [Pg.226]    [Pg.226]    [Pg.205]    [Pg.130]    [Pg.204]    [Pg.237]    [Pg.482]    [Pg.485]    [Pg.185]    [Pg.299]    [Pg.307]    [Pg.459]    [Pg.481]    [Pg.482]    [Pg.487]    [Pg.517]    [Pg.567]    [Pg.681]    [Pg.735]    [Pg.741]    [Pg.766]    [Pg.858]    [Pg.922]    [Pg.930]    [Pg.949]    [Pg.965]    [Pg.1071]    [Pg.1071]    [Pg.4]    [Pg.298]    [Pg.513]    [Pg.308]    [Pg.505]   
See also in sourсe #XX -- [ Pg.379 , Pg.380 ]




SEARCH



Calcium hydroxide reaction with carbon dioxide

Carbon dioxide calcium hydroxide

Carbon dioxide lithium hydroxide reaction with

Carbon dioxide removal with sodium hydroxide solutions

Carbon hydroxide

Hydroxide carbonates

© 2024 chempedia.info