Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon, dietary source

An alkene, sometimes caJled an olefin, is a hydrocarbon that contains a carbon-carbon double bond. Alkenes occur abundantly in nature. Ethylene, for instance, is a plant hormone that induces ripening in fruit, and o-pinene is the major component of turpentine. Life itself would be impossible without such alkenes as /3-carotene, a compound that contains 11 double bonds. An orange pigment responsible for the color of carrots, /3-carotene is a valuable dietary source of vitamin A and is thought to offer some protection against certain types of cancer. [Pg.172]

Terpenoids are classified according to the number of five-carbon multiples they contain. Monoterpenoids contain 10 carbons and are derived from two isopentenyl diphosphates, sesquiterpenoids contain 15 carbons and are derived from three isopentenyl diphosphates, diterpenoids contain 20 carbons and are derived from four isopentenyl diphosphates, and so on, up to triterpenoids (C30) and tetraterpenoids (C40). Monoterpenoids and sesquiterpenoids are found primarily in plants, bacteria, and fungi, but the higher terpenoids occur in both plants and animals. The triterpenoid lanosterol, for example, is the precursor from which steroid hormones are made, and the tetraterpenoid /3-carotene is a dietary source of vitamin A (Figure 27.6). [Pg.1071]

It is immediately clear that Acanthomyops need not rely on dietary sources of terpenes but can synthesize citronellal and citral from either acetate or mevalonate. The higher total activity of the citronellal as compared with the citral probably reflects the natural preponderance of citronellal (ca. 90%) in the ant secretion. As the specific activities show, these results are consistent with a common biogenetic origin of both terpenes. In the mevalonic acid pathway as described from other organisms (13), the radioactive carbon of l-C14-mevalonate is lost upon formation of isopentenyl pyrophosphate. [Pg.33]

Two classes of dendrobatid alkaloids have potential dietary sources. The first are the pyrrolizidine oximes (32), whose carbon skeleton is identical to that of nitropolyzonamine, an alkaloid from a small millipede (33). Indeed, raising the dendrobatid frog D. auratus in Panama on leaf-litter arthropods, gathered weekly, resulted in skin levels of the... [Pg.34]

The hydrophobic nature of CDDs, combined with their great affinity for organic carbon, suggests that a major proportion of CDDs in the aquatic environment is sorbed to organic matter and sediment. Because only a minute fraction of CDDs are dissolved in the natural environment, bioconcentration is not the primary route of exposure for most aquatic organisms. Whereas the term bioconcentration is defined as the uptake of a chemical from water only, the term bioaccumulation refers to the combined uptake of a chemical from both dietary sources (e.g., food) and water. A bioaccumulation factor (BAF) that includes the ingestion route of uptake can be calculated based on fish uptake from water, food, and sediment (Sherman et al. 1992). [Pg.435]

Both the active and passive modes of calcium transport are increased during pregnancy and lactation. This is probably due to the increase in calbindin and serum PTH and 1,25-dihydroxyvitamin D concentrations that occur during normal pregnancy. Intestinal calcium absorption is also dependent on age, with a 0.2% per year decline in absorption efficiency starting in midlife. The fractional absorption of calcium depends on the form and dietary source. Absorption rates are 29% for the calcium in cow s milk, 35% for calcium citrate, 27% for calcium carbonate, and 25% for tricalcium phosphate. Other factors that limit the bioavailability of calcium in the intestine are oxalates and phy-tates, which are found in high quantities in vegetarian diets and which chelate calcium. [Pg.327]

Alpha-linolenic acid (18 3n-3) is an 18-carbon fatty acid with three double bonds at carbons 9, 12, and 15. It is an essential n-3 fatty acid that is a required nutrient for human beings and can be obtained through diets including both plant and animal sources. Alpha-linolenic acid can be converted by elongases and desaturases to other beneficial n-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosa-hexaenoic acid (DHA), which are implicated in normal brain development, normal vision, and a decreased risk of heart disease. Novel dietary sources of n-3 fatty acids are desired for those who do not consume adequate amounts of fish or fish-based food products rich in long-chain n-3 fatty acids. This section summarized fruit, spice, and herb seed oils rich in a-linolenic acid (18 3n-3). These include black raspberry, red raspberry, boysenberry, marionberry, blueberry, cranberry, sea buckthorn, basil, and hemp seed oils. [Pg.1594]

During respiration, nitrogen isotopes are fractionated by about -I- 3%o for each trophic level nitrogen isotopes in animal biomass are on average 3%o more positive than the 8 N of their diets. This contrasts with the situation for carbon isotopes, in which there is little fractionation during respiration. If animals are known to have a common dietary source the comparative nitrogen content of... [Pg.149]

In Refsum s disease, an autosomal recessive disorder, the defect is probably in the a-hydroxylation of phytanic acid. Phytanic acid is a 20-carbon, branched-chain fatty acid derived from the plant alcohol phytol, which is present as an ester in chlorophyll. Thus, its origin in the body is from dietary sources. The oxidation of phytanic acid is shown in Figure 18-6. The clinical characteristics of Refsum s disease include peripheral neuropathy and ataxia, retinitis pigmentosa, and abnormalities of skin and bones. Significant improvement has been observed when patients are kept on low-phytanic acid diets for prolonged periods (e.g., diets that exclude dairy and ruminant fat). [Pg.374]

Nucleotides are synthesized by two types of metabolic pathways de novo synthesis and salvage pathways. The former refers to synthesis of purines and pyrimidines from precursor molecules the latter refers to the conversion of preformed purines and pyrimidines—derived from dietary sources, the surrounding medium, or nucleotide catabolism—to nucleotides, usually by addition of ribose-5-phosphate to the base. De novo synthesis of purines is based on the metabolism of one-carbon compounds. [Pg.615]

Polyunsaturated fatty acids (PUFA) A fatty acid molecule that contains two or more double bonds along the carbon chain. Two classes of PUFA exist omega-6 and omega-3. Humans, like all mammals, are unable to totally synthesize omega-3 or omega-6 PUFA and must obtain them from dietary sources. [Pg.422]

Tetrahydrofolate (THF) The active form of the vitamin folic acid. THF is one of the major carriers of one-carbon units at various oxidation states for biosynthetic reactions. It is required for the synthesis of the nucleotide thymidylate (dTMP). Although bacteria can synthesize folic acid, eukaryotes must obtain folate from the diet. Dietary sources of folate include leafy green vegetables (e.g., spinach and turnip greens), citrus fruits, and legumes. Many breakfast cereals, breads, and other grain products are fortified with folate. [Pg.27]

Linoleate and linolenate cannot be synthesized by the body and must therefore be obtained from dietary sources. Mammals cannot produce a double bond beyond carbon atom 9 of fatty acids. [Pg.795]

Conjugated linoleic acid (CLA) is naturally present in milk, dairy products, and the meat of ruminants (1). Ruminants are the major dietary source of this fatty acid because of the unique abihty of rumen bacteria to convert linoleic acid into cis-9,trans- CLA (c9,tll-CLA) (1). This reaction is part of a process that takes place in the rumen it is called biohydrogenation and it converts linoleic acid [or, less efficiently, other 18-carbon polyunsaturated fatty acids (PUFA) with double bonds located at 9 and 12 positions] to stearic acid (1). During this process, vaccenic acid (tl 1-18 1) is formed. This acid can be converted to CLA in all organisms that possess A9-desaturase (2). [Pg.348]

Most of the inorganic sulfate assimilated and reduced by plants appears ultimately in cysteine and methionine. These amino acids contain about 90% of the total sulfur in most plants (Allaway and Thompson, 1966). Nearly all of the cysteine and methionine is in protein. The typical dominance of protein cysteine and protein methionine in the total organic sulfur is illustrated in Table I by analyses of the sulfur components of a lower plant (Chlorella) and a higher plant (Lemna). Thede novo synthesis of cysteine and methionine is one of the key reactions in biology, comparable in importance to the reduction of carbon in photosynthesis (Allaway, 1970). This is so because all nonruminant animals studied require a dietary source of methionine or its precursor, homocysteine. Animals metabolize methionine via cysteine to inorganic sulfate. Plants complete the cycle of sulfur by reduction of inorganic sulfate back to cysteine and methionine, and are thus the ultimate source of the methionine in most animal diets (Siegel, 1975). [Pg.454]

Plants and many microorganisms are able to synthesise proteins from simple nitrogenous compounds such as nitrates. Animals cannot synthesise the amino group, and in order to build up body proteins they must have a dietary source of amino acids. Certain amino acids can be produced from others by a process known as transamination (see Chapter 9), but the carbon skeletons of a number of amino acids cannot be synthesised in the animal body these are referred to as essential or indispensible amino acids. [Pg.58]


See other pages where Carbon, dietary source is mentioned: [Pg.193]    [Pg.193]    [Pg.196]    [Pg.356]    [Pg.182]    [Pg.123]    [Pg.19]    [Pg.33]    [Pg.47]    [Pg.4]    [Pg.684]    [Pg.208]    [Pg.617]    [Pg.999]    [Pg.555]    [Pg.274]    [Pg.688]    [Pg.107]    [Pg.134]    [Pg.134]    [Pg.918]    [Pg.215]    [Pg.564]    [Pg.54]    [Pg.5559]    [Pg.140]    [Pg.744]    [Pg.69]   
See also in sourсe #XX -- [ Pg.207 , Pg.209 ]




SEARCH



Carbon dietary

Carbon source

Dietary sources

© 2024 chempedia.info