Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radioactive carbon

Catching carbons. Radioactive-labeling experiments can yield estimates of how much glucose 6-phosphate is metabolized by the pentose phosphate pathway and how much is metabolized by the combined action of glycolysis and the citric acid cycle. Suppose that you have samples ot two different tissues as well as two radioactively labeled glucose samples, one... [Pg.591]

The UBT is based on HP urease activity. The carbon (nonradioac-tive isotope) and " carbon (radioactive isotope) tests require that the patient ingest radiolabeled urea, which is then hydrolyzed by HP (if present in the stomach) to ammonia and radiolabeled bicarbonate. The radiolabeled bicarbonate is absorbed in the blood and excreted in the breath. A mass spectrometer is used to detect carbon, whereas " carbon is measured using a scintillation counter. The stool antigen test is approved by the Food and Drug Administration (FDA), but availability in the United States is limited. It is less expensive and easier to perform than the UBT, and may be useful in children. Although comparable to the UBT in the initial detection of HP, the stool antigen test is less accurate when used to confirm HP eradication posttreatment. Salivary and urine antibody tests are under investigation. ... [Pg.636]

A solution to the question of the mechanism of these reactions was provided by John D Roberts m 1953 on the basis of an imaginative experiment Roberts prepared a sample of chlorobenzene m which one of the carbons the one bearing the chlorine was the radioactive mass 14 isotope of carbon Reaction with potassium amide m liquid... [Pg.982]

How many carbon atoms of citronellal would be radioactively labeled if the acetic acid used in the experiment were enriched with at C 1 instead of at C 2 Identify these carbon atoms... [Pg.1092]

One example of a characterization application is the determination of a sample s age based on the kinetics for the decay of a radioactive isotope present in the sample. The most common example is carbon-14 dating, which is used to determine the age of natural organic materials. [Pg.647]

What mass of carbon is needed to give a percent relative standard deviation of 1.0% for the activity of a sample if counting is limited to 1 h How long must the radioactive decay from a 0.50-g sample of carbon be monitored to give a percent relative standard deviation of 1 % for the activity ... [Pg.663]

To prevent such release, off gases are treated in Charcoal Delay Systems, which delay the release of xenon and krypton, and other radioactive gases, such as iodine and methyl iodide, until sufficient time has elapsed for the short-Hved radioactivity to decay. The delay time is increased by increasing the mass of adsorbent and by lowering the temperature and humidity for a boiling water reactor (BWR), a typical system containing 211 of activated carbon operated at 255 K, at 500 K dewpoint, and 101 kPa (15 psia) would provide about 42 days holdup for xenon and 1.8 days holdup for krypton (88). Humidity reduction is typically provided by a combination of a cooler-condenser and a molecular sieve adsorbent bed. [Pg.285]

OtherApphca.tlons. Many appHcations of adsorption involving radioactive compounds simply parallel similar appHcations involving the same compounds in nonradio active forms, eg, radioactive carbon-14, or deuterium- or tritium-containing versions of CO2, H2O, hydrocarbons. For example, molecular sieve 2eohtes are commonly employed for these separations, just as for the corresponding nonradio active uses. [Pg.285]

The metabohc rate of poly(ester—amide) where x = Q has been studied in rats using carbon-14 labeled polymer. This study indicates that polymer degradation occurs as a result of hydrolysis of the ester linkages whereas the amide linkages remain relatively stable in vivo. Most of the radioactivity is excreted by urine in the form of unchanged amidediol monomer, the polymer hydrolysis product (51). [Pg.192]

Any radioactive nucUde or isotope of an element can be used as a radioactive tracer, eg, chromium-51 [14392-02-0] cobalt-60 [10198-40-0] tin-110 [15700-33-1] and mercury-203 [13982-78-0],hut the preponderance ofuse has been for carbon-14 [14762-75-5],hydj ogen-3 [10028-17-8] (tritium), sulfur-35 [15117-53-0], phosphoms-32, and iodine-125 [14158-31 -7]. More recendy phosphoms-33 has become available and is used to replace sulfur-35 and phosphoms-32 in many appUcations. By far the greater number of radioactive tracers produced are based on carbon-14 and hydrogen-3 because carbon and hydrogen exist in a large majority of the known natural and synthetic chemical compounds. [Pg.437]

The radioactive isotopes available for use as precursors for radioactive tracer manufacturing include barium [ C]-carbonate [1882-53-7], tritium gas, p2p] phosphoric acid or pP]-phosphoric acid [15364-02-0], p S]-sulfuric acid [13770-01 -9], and sodium [ I]-iodide [24359-64-6]. It is from these chemical forms that the corresponding radioactive tracer chemicals are synthesized. [ C]-Carbon dioxide, [ C]-benzene, and [ C]-methyl iodide require vacuum-line handling in weU-ventilated fume hoods. Tritium gas, pH]-methyl iodide, sodium borotritide, and [ I]-iodine, which are the most difficult forms of these isotopes to contain, must be handled in specialized closed systems. Sodium p S]-sulfate and sodium [ I]-iodide must be handled similarly in closed systems to avoid the Uberation of volatile p S]-sulfur oxides and [ I]-iodine. Adequate shielding must be provided when handling P P]-phosphoric acid to minimize exposure to external radiation. [Pg.437]

Synthetic chemical approaches to the preparation of carbon-14 labeled materials iavolve a number of basic building blocks prepared from barium [ CJ-carbonate (2). These are carbon [ C]-dioxide [ CJ-acetjlene [U— C]-ben2ene, where U = uniformly labeled [1- and 2- C]-sodium acetate, [ C]-methyl iodide, [ C]-methanol, sodium [ C]-cyanide, and [ CJ-urea. Many compHcated radiotracers are synthesized from these materials. Some examples are [l- C]-8,ll,14-eicosatrienoic acid [3435-80-1] inoxn. [ CJ-carbon dioxide, [ting-U— C]-phenyhsothiocyanate [77590-93-3] ftom [ " CJ-acetjlene, [7- " C]-norepinephrine [18155-53-8] from [l- " C]-acetic acid, [4- " C]-cholesterol [1976-77-8] from [ " CJ-methyl iodide, [l- " C]-glucose [4005-41-8] from sodium [ " C]-cyanide, and [2- " C]-uracil [626-07-3] [27017-27-2] from [ " C]-urea. All syntheses of the basic radioactive building blocks have been described (4). [Pg.438]

Even higher organisms can be used for the production of labeled compounds. Plants, tobacco, or Canna indica for example, when grown in an exclusive atmosphere of radioactive carbon dioxide, [ 002], utilize the labeled precursor as the sole source of carbon for photosynthesis. After a suitable period of growth, almost every carbon atom in the plant is radioactive. Thus, plants can serve as an available source of C-labeled carbohydrates (9). [Pg.438]

Adsorption of Radionuclides. Other appHcations that depend on physical adsorption include the control of krypton and xenon radionuchdes from nuclear power plants (92). The gases are not captured entirely, but their passage is delayed long enough to allow radioactive decay of the short-hved species. Highly rnicroporous coconut-based activated carbon is used for this service. [Pg.535]

Mass Spectrometer. The mass spectrometer is the principal analytical tool of direct process control for the estimation of tritium. Gas samples are taken from several process points and analy2ed rapidly and continually to ensure proper operation of the system. Mass spectrometry is particularly useful in the detection of diatomic hydrogen species such as HD, HT, and DT. Mass spectrometric detection of helium-3 formed by radioactive decay of tritium is still another way to detect low levels of tritium (65). Accelerator mass spectroscopy (ams) has also been used for the detection of tritium and carbon-14 at extremely low levels. The principal appHcation of ams as of this writing has been in archeology and the geosciences, but this technique is expected to faciUtate the use of tritium in biomedical research, various clinical appHcations, and in environmental investigations (66). [Pg.15]

Applicability Most hazardous waste slurried in water can be mixed directly with cement, and the suspended solids will be incorporated into the rigid matrices of the hardened concrete. This process is especially effective for waste with high levels of toxic metals since at the pH of the cement mixture, most multivalent cations are converted into insoluble hydroxides or carbonates. Metal ions also may be incorporated into the crystalline structure of the cement minerals that form. Materials in the waste (such as sulfides, asbestos, latex and solid plastic wastes) may actually increase the strength and stability of the waste concrete. It is also effective for high-volume, low-toxic, radioactive wastes. [Pg.180]

How many carbon atoms of citronellal would be radioactively... [Pg.1092]

C-labeled carbon dioxide is administered to a green plant, and shortly thereafter the following compounds are isolated from the plant 3-phosphoglycerate, glucose, erythrose-4-phosphate, sedoheptulose-l,7-bisphosphate, ribose-5-phosphate. In which carbon atoms will radioactivity be found ... [Pg.740]


See other pages where Radioactive carbon is mentioned: [Pg.838]    [Pg.524]    [Pg.860]    [Pg.356]    [Pg.516]    [Pg.838]    [Pg.524]    [Pg.860]    [Pg.356]    [Pg.516]    [Pg.80]    [Pg.236]    [Pg.340]    [Pg.486]    [Pg.126]    [Pg.217]    [Pg.826]    [Pg.1092]    [Pg.648]    [Pg.338]    [Pg.339]    [Pg.388]    [Pg.9]    [Pg.181]    [Pg.38]    [Pg.330]    [Pg.557]    [Pg.20]    [Pg.99]    [Pg.439]    [Pg.474]    [Pg.225]    [Pg.826]    [Pg.1092]    [Pg.581]    [Pg.731]    [Pg.125]   
See also in sourсe #XX -- [ Pg.14 , Pg.276 ]

See also in sourсe #XX -- [ Pg.14 , Pg.276 ]

See also in sourсe #XX -- [ Pg.139 , Pg.152 ]

See also in sourсe #XX -- [ Pg.20 , Pg.55 , Pg.82 , Pg.88 , Pg.89 , Pg.123 , Pg.137 , Pg.210 , Pg.244 ]




SEARCH



Carbon dioxide radioactive

Carbon metabolism studies with radioactive

Carbon radioactive dating with

Carbon radioactive decay

Carbon radioactive isotope

Carbon specific radioactivity

Carbon, fixed forms radioactive

Carbone radioactive

Carbone radioactive

Isotopic labelling with radioactive carbon

Radioactive carbon monoxide studies

Radioactive carbon, metabolism

Radioactive isotopes carbon-14 production

Radioactive isotopes of carbon

Radioactivity carbon

Radioactivity carbon

Uptake of radioactive carbon

© 2024 chempedia.info