Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calcium carbonate extraction

Ground calcium carbonate, extracted from the earth, is present in practically every country in the world in varying quantities in the form of limestone, marble, dolomite or chalk. Following the extraction, GCC needs to be ground. Dry grinding, the cheaper alternative, is often limited to a minimum particle size of 2- 3 microns. Wet grinding, more expensive, is used for fine and ultra fine material or when the final product must be a slurry (paper or paint application). Precipitated calcium carbonate is produced by chemical reaction between... [Pg.38]

Calcium carbonate Extraction of iron, making cement, glass making... [Pg.133]

Fit a 1500 ml. bolt-head flask with a reflux condenser and a thermometer. Place a solution of 125 g. of chloral hydrate in 225 ml. of warm water (50-60°) in the flask, add successively 77 g. of precipitated calcium carbonate, 1 ml. of amyl alcohol (to decrease the amount of frothing), and a solution of 5 g. of commercial sodium cyanide in 12 ml. of water. An exothermic reaction occurs. Heat the warm reaction mixture with a small flame so that it reaches 75° in about 10 minutes and then remove the flame. The temperature will continue to rise to 80-85° during 5-10 minutes and then falls at this point heat the mixture to boiling and reflux for 20 minutes. Cool the mixture in ice to 0-5°, acidify with 107-5 ml. of concentrated hydrochloric acid. Extract the acid with five 50 ml. portions of ether. Dry the combined ethereal extracts with 10 g. of anhydrous sodium or magnesium sulphate, remove the ether on a water bath, and distil the residue under reduced pressure using a Claiseii flask with fractionating side arm. Collect the dichloroacetic acid at 105-107°/26 mm. The yield is 85 g. [Pg.431]

Triturate 20 g. of dry o-toluidine hydrochloride and 35 5 g. of powdered iodine in a mortar and then grind in 17 -5 g. of precipitated calcium carbonate. Transfer the mixture to a conical flask, and add 100 ml. of distilled water with vigorous shaking of the flask. Allow the mixture to stand for 45 minutes with occasional agitation, then heat gradually to 60-70° for 5 minutes, and cool. Transfer the contents of the flask to a separatory funnel, extract the base with three 80 ml. portions of ether, diy the extract with anhydrous calcium chloride or magnesium sulphate, and remove the excess of solvent. The crude 5-iodo-2-aminotoluene separates in dark crystals. The yield is 32 g. Recrystallise from 50 per cent, alcohol nearly white crystals, m.p. 87°, are obtained. [Pg.648]

Place 45 g. (43 ml.) of benzal chloride (Section IV,22), 250 ml. of water and 75 g. of precipitated calcium carbonate (1) in a 500 ml. round-bottomed flask fltted with a reflux condenser, and heat the mixture for 4 hours in an oil bath maintained at 130°. It is advantageous to pass a current of carbon dioxide through the apparatus. Filter off the calcium salts, and distil the filtrate in steam (Fig. II, 40, 1) until no more oil passes over (2). Separate the benzaldehyde from the steam distillate by two extractions with small volumes of ether, distil off most of the ether on a water bath, and transfer the residual benzaldehyde to a wide-mouthed bottle or flask. Add excess of a concentrated solution of sodium bisulphite in portions with stirring or shaking stopper the vessel and shake vigorously until the odour of benzaldehyde can no longer be detected. Filter the paste of the benzaldehyde bisulphite compound at the pump... [Pg.693]

By experimentally determining the ratio of abundances of C and isotope peaks for CO2 dissolved in sea water at various temperatures, a graph can be drawn relating the solubility of CO2 compared with that of CO2 (the ratio described above). On extracting the CO2 from sediment containing the shells (calcium carbonate) of dead sea creatures by addition of acid, a ratio (R) of abundances of CO2 to CO2 can be measured. If this value is read from the graph, a temperature T is extrapolated, indicating the temperature of the sea at the time the sediment was laid down. Such experiments have shown that 10,000 years ago the temperature of the Mediterranean was much as it is now. [Pg.340]

Decomposition with Bases. Alkaline decomposition of poUucite can be carried out by roasting poUucite with either a calcium carbonate—calcium chloride mix at 800—900°C or a sodium carbonate—sodium chloride mix at 600—800°C foUowed by a water leach of the roasted mass, to give an impure cesium chloride solution that is separated from the gangue by filtration (22). The solution can then be converted to cesium alum [7784-17-OJ, CS2SO4 Al2(S0 2 24H20. Extraction of cesium from the poUucite is almost complete. Solvent extraction of cesium carbonate from the cesium chloride solution using a phenol in kerosene has also been developed (23). [Pg.375]

Type of dryer tions, extracts, milk, blood, waste liquors, rubber latex, etc. gents, calcium carbonate, bentonite, clay sbp, lead concentrates, etc. trifuged sobds, starch, etc. dry. Examples centrifuged precipitates, pigments, clay, cement. ores, potato strips, synthetic rubber. objects, rayon skeins, lumber. sheets. her sheets. [Pg.1187]

A solution of cholestane-5a,6a-diol 6-tosylate (115a, 0.15 g) in dimethylformamide (20 ml) containing calcium carbonate (0.2 g) is heated for 8 hr on a steam bath. The reaction mixture is then cooled, filtered and diluted with water. The mixture is extracted with ether and the ether extracts are washed with water and saturated salt solution, dried over anhydrous magnesium sulfate and evaporated to dryness under reduced pressure to give the A-homo-B-norketone (116a, 85 mg) mp 123-125° [a]j> 21° (CHCI3). [Pg.394]

About 250 ml of a reaction mixture obtained by the electrolytic reduction of nitrobenzene in sulfuric acid solution and containing about 23 grams of p-aminophenol by assay is neutralized while at a temperature of 60° to 65°C, to a pH of 4.5 with calcium carbonate. The calcium sulfate precipitate which forms is filtered off, the precipitate washed with hot water at about 65°C and the filtrate and wash water then combined. The solution is then extracted twice with 25 ml portions of benzene and the aqueous phase is treated with 0.5 part by weight, for each part of p-aminophenol present, of activated carbon and the latter filtered off. The activated carbon is regenerated by treatment with hot dilute caustic followed by a hot dilute acid wash, and reused a minimum of three times. [Pg.14]

Fe" (2 ppm), casein hydrolyzate (0.2 g/dl), yeast extract (0.2 g/dl), corn steep liquor (0.2 ml/dl), polypeptone (0.1 g/dl), meat extract (0.1 g/dl) and sodium ribonucleate (10 mg/dl) were poured into respective test tubes and each tube was sterilized at 115°C for 10 minutes. Thereafter separately sterilized calcium carbonate was added in the amount of 2 g/dl and then cells of Bacillus subtUis S26910 were Inoculated into the above media and cultured with shaking at 30°C for 20 hours. [Pg.815]

Sterile agar slants are prepared using the Streptomyces sporulation medium of Hickey and Tresner, J. Bact., vol. 64, pages 891-892 (1952). Four of these slants are inoculated with lyophilized spores of Streptomyces antibioticus NRRL 3238, incubated at 28°C for 7 days or until aerial spore growth is well-advanced, and then stored at 5°C. The spores from the four slants are suspended in 40 ml of 0.1% sterile sodium heptadecyl sulfate solution. A nutrient medium having the following composition is then prepared 2.0% glucose monohydrate 1.0% soybean meal, solvent extracted, 44% protein 0.5% animal peptone (Wilson s protopeptone 159) 0.2% ammonium chloride 0.5% sodium chloride 0.25% calcium carbonate and water to make 100%. [Pg.1576]

Calcinating a mineral removes its volatile components, such as water or carbon dioxide and leaves an usually crumbly solid residue. Calcinated secondary minerals such as limestone are the basic components of building cements, and in extractive metallurgy operations they facilitate the smelting of metals. Calcinating limestone (composed of calcium carbonate), for example, drives away carbon dioxide, leaving a solid, friable residue of quicklime (composed of calcium oxide) ... [Pg.172]

Calcium carbonate is a common inorganic compound known as limestone. Calcium carbonate has many applications in industries such as medicine, agriculture, paint plastic and surface coatings etc. The vast majority of calcium carbonate used in industry is extracted by mining process. Pure calcium carbonate (e.g. for food or pharmaceutical use), is synthesized by passing carbon dioxide into a solution of calcium hydroxide slurry. In this process calcium carbonate precipitates out, and this grade of product is referred to as precipitate calcium carbonate (abbreviated as PCC). The common reaction is as follows ... [Pg.171]

Calcium oxide can be produced from extensive heating of limestone. Primarily composed of calcium carbonate, limestone is extracted from both underground and surface mines and heated to temperatures exceeding 180°F to convert the calcium carbonate into calcium oxide. This thermal decomposition reaction also generates carbon dioxide gas. [Pg.65]

As mentioned earlier, biological systems have developed optimized strategies to design materials with elaborate nanostructures [6]. A straightforward approach to obtaining nanoparticles with controlled size and organization should therefore rely on so-called biomimetic syntheses where one aims to reproduce in vitro the natural processes of biomineralization. In this context, a first possibility is to extract and analyze the biological (macro)-molecules that are involved in these processes and to use them as templates for the formation of the same materials. Such an approach has been widely developed for calcium carbonate biomimetic synthesis [13]. In the case of oxide nanomaterials, the most studied system so far is the silica shell formed by diatoms [14]. [Pg.160]

The following substances have been added to culture media to increase the yields of dextran raw beet sugar or molasses,80 commercial maple sirup,1 yeast extract,81 magnesium and ammonium sulfates,82 tomato juice,8,81 calcium carbonate,3 and a water extract of waste sugarrefining charcoal (probably containing materials related to the vitamin B complex).88... [Pg.228]

Tsunogai and Nozaki [6] analysed Pacific Oceans surface water by consecutive coprecipitations of polonium with calcium carbonate and bismuth oxychloride after addition of lead and bismuth carriers to acidified seawater samples. After concentration, polonium was spontaneously deposited onto silver planchets. Quantitative recoveries of polonium were assumed at the extraction steps and plating step. Shannon et al. [7], who analysed surface water from the Atlantic Ocean near the tip of South Africa, extracted polonium from acidified samples as the ammonium pyrrolidine dithiocarbamate complex into methyl isobutyl ketone. They also autoplated polonium onto silver counting disks. An average efficiency of 92% was assigned to their procedure after calibration with 210Po-210Pb tracer experiments. [Pg.345]

Calsinter A process for extracting aluminum from fly ash and from flue-gas desulfurization sludge. The ash is sintered with calcium carbonate and calcium sulfate at 1,000 to 1,200°C and then leached with sulfuric acid. Developed at Oak Ridge National Laboratory, United States in 1976, but not known to have been piloted. [Pg.48]

Basic soils present a unique analytical challenge. Most of these soils contain calcium carbonate (CaC03) as the primary base. Basic soils also contain magnesium and, to a lesser extent, sodium carbonate. Although soils containing lithium and potassium carbonate are known, they are uncommon. These compounds produce a basic solution when dissolved in water. This means that adding either water as an extractant or water containing small amounts of salt is not effective because the soil already contains salts and solutions immediately become basic when added to these soils. [Pg.239]

Activated charcoal, purified - place about 50 g Darco C-5 activated carbon in a wide-neck screw-cap container, add sufficient calcium phosphate extractant to completely wet it, then cap the bottle and shake for 5 min. Filter slowly with suction through a Buchner funnel, then wash three times successively with deionized water. Test the final leachate with a solution of barium chloride (approximately 1.4% m/v in 0.3 M HCI). If turbidity indicates the presence of sulphate, return the charcoal to a beaker, thoroughly mix with deionized water (boil for 15 min if necessary to get a clear test), refilter, wash and test for S as above. When satisfactory, dry overnight at 105°C and store in a tightly capped bottle. [Pg.94]


See other pages where Calcium carbonate extraction is mentioned: [Pg.157]    [Pg.546]    [Pg.46]    [Pg.513]    [Pg.151]    [Pg.709]    [Pg.117]    [Pg.294]    [Pg.437]    [Pg.1268]    [Pg.145]    [Pg.2]    [Pg.123]    [Pg.143]    [Pg.157]    [Pg.144]    [Pg.239]    [Pg.279]    [Pg.474]    [Pg.79]    [Pg.354]    [Pg.332]    [Pg.88]    [Pg.214]   
See also in sourсe #XX -- [ Pg.8 , Pg.26 ]




SEARCH



Calcium carbonate

Carbon extraction

© 2024 chempedia.info