Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calcium carbonate processing

Where both the quicklime and the co-produced carbon dioxide can be used as raw materials (e.g., in the ammonia-soda process for sodium carbonate, the sugar beet refining process and the precipitated calcium carbonate process) it is generally economically attractive to install lime kilns on site as an integral part of the process and to accept the relatively high delivery costs of the limestone. [Pg.256]

Calcium carbonate Processing oil Zinc oxide Stearic acid... [Pg.356]

McAmish, L. and Skelhom, D.Spunlaid fibers comprising coated calcium carbonate, processes for their production. [Pg.306]

During production of factice, other additives may be employed to lower the cost or buffer the pH, or adjust the processability. Calcium carbonate, process oils, and magnesium oxide buffer are some of the items that are added at relatively low levels to modify factice. Certain proprietary process aids may be added to improve processing characteristics. [Pg.400]

A further important reaction is the replacementot the Ca + ion in calcium carbonate by a magnesium ion. The latter is smaller, hence space or porosity is created in the mineral lattice by the replacement. The resulting mineral is dolomite and the increase in effective porosity can be as high as 13%. The process can be expressed as... [Pg.88]

When heated, sodium hydrogencarbonate readily decomposes evolving carbon dioxide, a reaction which leads to its use as baking powder when the carhon dioxide evolved aerates the dough. In the soda-ammonia process the carbon dioxide evolved is used to supplement the main carbon dioxide supply obtained by heating calcium carbonate ... [Pg.133]

Lime Soda. Process. Lime (CaO) reacts with a dilute (10—14%), hot (100°C) soda ash solution in a series of agitated tanks producing caustic and calcium carbonate. Although dilute alkaH solutions increase the conversion, the reaction does not go to completion and, in practice, only about 90% of the stoichiometric amount of lime is added. In this manner the lime is all converted to calcium carbonate and about 10% of the feed alkaH remains. The resulting slurry is sent to a clarifier where the calcium carbonate is removed, then washed to recover the residual alkaH. The clean calcium carbonate is then calcined to lime and recycled while the dilute caustic—soda ash solution is sent to evaporators and concentrated. The concentration process forces precipitation of the residual sodium carbonate from the caustic solution the ash is then removed by centrifugation and recycled. Caustic soda made by this process is comparable to the current electrolytic diaphragm ceU product. [Pg.527]

In the commonly used Welland process, calcium cyanamide, made from calcium carbonate, is converted to cyanamide by reaction with carbon dioxide and water. Dicyandiamide is fused with ammonium nitrate to form guanidine nitrate. Dehydration with 96% sulfuric acid gives nitroguanidine which is precipitated by dilution. In the aqueous fusion process, calcium cyanamide is fused with ammonium nitrate ia the presence of some water. The calcium nitrate produced is removed by precipitation with ammonium carbonate or carbon dioxide. The filtrate contains the guanidine nitrate that is recovered by vacuum evaporation and converted to nitroguanidine. Both operations can be mn on a continuous basis (see Cyanamides). In the Marquerol and Loriette process, nitroguanidine is obtained directly ia about 90% yield from dicyandiamide by reaction with sulfuric acid to form guanidine sulfate followed by direct nitration with nitric acid (169—172). [Pg.16]

In addition to the main acidulation reaction, other reactions also occur. Free calcium carbonate in the rock reacts with the acid to produce additional by-product calcium compounds and CO2 gas which causes foaming. Other mineral impurities, eg, Fe, Al, Mg, U, and organic matter, dissolve, the result being that the wet-process acid is highly impure. [Pg.225]

Calcium C rbon te. Calcium carbonate, like R2O2, affects sulfuric and oleum consumption in the HF process. Sulfuric acid loss is approximately 0.98% H2SO4 for each percentage of CaCO. The carbon dioxide evolved by the reaction increases the noncondensable gas flow, and because it carries HF, contributes to yield losses in the vent stream. [Pg.195]

Rotary kilns and, to a lesser extent, Fluo-SoHds kilns are used to calcine a wet precipitated calcium carbonate filter cake in the kraft or sulfate paper-pulp process (15). Lime is regenerated for use as a causticization reagent in recovering caustic soda for pulp digestion. Losses in lime recovery are replaced by purchased lime (see Paper Pulp). [Pg.173]

The key difference between the brine process and seawater process is the precipitation step. In the latter process (Fig. 6) the seawater is first softened by a dding small amounts of lime to remove bicarbonate and sulfates, present as MgSO. Bicarbonate must be removed prior to the precipitation step to prevent formation of insoluble calcium carbonate. Removal of sulfates prevents formation of gypsum, CaS02 2H20. Once formed, calcium carbonate and gypsum cannot be separated from the product. [Pg.347]

Synthetic Marble. Synthetic marble-like resin products are prepared by casting or molding a highly filled monomer mixture or monomer—polymer symp. When only one smooth surface is required, a continuous casting process using only one endless stainless steel belt can be used (52,53). Typically on the order of 60 wt % inorganic filler is used. The inorganic fillers, such as aluminum hydroxide, calcium carbonate, etc, are selected on the basis of cost, and such properties as the translucence, chemical and water resistance, and ease of subsequent fabrication (54,55). [Pg.265]

Naphthalenesulfonic Acid. The sulfonation of naphthalene with excess 96 wt % sulfuric acid at < 80°C gives > 85 wt % 1-naphthalenesulfonic acid (a-acid) the balance is mainly the 2-isomer (P-acid). An older German commercial process is based on the reaction of naphthalene with 96 wt % sulfuric acid at 20—50°C (13). The product can be used unpurifted to make dyestuff intermediates by nitration or can be sulfonated further. The sodium salt of 1-naphthalenesulfonic acid is required, for example, for the conversion of 1-naphthalenol (1-naphthol) by caustic fusion. In this case, the excess sulfuric acid first is separated by the addition of lime and is filtered to remove the insoluble calcium sulfate the filtrate is treated with sodium carbonate to precipitate calcium carbonate and leave the sodium l-naphthalenesulfonate/7J(9-/4-J7 in solution. The dry salt then is recovered, typically, by spray-drying the solution. [Pg.489]

At about the same time that the Birkeland-Eyde process was developed, the Frank-Caro cyanamide process was commercialized (14). In this process limestone is heated to produce lime, which then reacts with carbon in a highly energy-demanding reaction to give calcium carbide. Reaction with N2 gives calcium cyanamide [150-62-7] which hydrolyzes to ammonia and calcium carbonate (see Cyanamides). [Pg.83]

Polypropylene polymers are typically modified with ethylene to obtain desirable properties for specific applications. Specifically, ethylene—propylene mbbers are introduced as a discrete phase in heterophasic copolymers to improve toughness and low temperature impact resistance (see Elastomers, ETHYLENE-PROPYLENE rubber). This is done by sequential polymerisation of homopolymer polypropylene and ethylene—propylene mbber in a multistage reactor process or by the extmsion compounding of ethylene—propylene mbber with a homopolymer. Addition of high density polyethylene, by polymerisation or compounding, is sometimes used to reduce stress whitening. In all cases, a superior balance of properties is obtained when the sise of the discrete mbber phase is approximately one micrometer. Examples of these polymers and their properties are shown in Table 2. Mineral fillers, such as talc or calcium carbonate, can be added to polypropylene to increase stiffness and high temperature properties, as shown in Table 3. [Pg.409]

Calcium carbonate (calcite) scale formation in hard water can be prevented by the addition of a small amount of soluble polyphosphate in a process known as threshold treatment. The polyphosphate sorbs to the face of the calcite nuclei and further growth is blocked. Polyphosphates can also inhibit the corrosion of metals by the sorption of the phosphate onto a thin calcite film that deposits onto the metal surface. When the polyphosphate is present, a protective anodic polarization results. [Pg.340]

Causticization, the reaction of hydrated lime [1305-62-0], Ca(OH)2, with sodium carbonate to regenerate sodium hydroxide and precipitate calcium carbonate, is an important part of the Bayer process chemistry. [Pg.134]

Aluminum sulfate [7784-31-8] solutions can also be used for all or part of the PAG Al source. In one process, a mixture of alum and aluminum chloride is neutralized using calcium carbonate, and soHd calcium sulfate [7778-18-9] is removed by filtration (22). In another process alum is mixed with calcium chloride and calcium hydroxide (23) ... [Pg.180]

Some companies have used the Merseburg process to manufacture ammonium sulfate from gypsum, but the process is only economically attractive where sulfur is unavailable or very expensive (32), and is thus not used in the United States. Ammonium carbonate, formed by the reaction of ammonia and carbon dioxide in an aqueous medium, reacts with suspended, finely ground gypsum. Insoluble calcium carbonate and an ammonium sulfate solution are formed. [Pg.368]

At room temperature, the bisulfite pH inflection poiat occurs at pH 4.5 and the monosulfite at pH 9. Analogous equations can be written for magnesium, calcium, and ammonia. The starting raw materials, ia addition to sulfur, are sodium hydroxide, magnesium oxide, calcium carbonate, or ammonia, depending on the base used. The four commercial bases used ia the sulfite process are compared ia Table 4. [Pg.272]

In another process, strontium sulfate can be converted to strontium carbonate direcdy by a metathesis reaction wherein strontium sulfate is added to a solution of sodium carbonate to produce strontium carbonate and leave sodium sulfate in solution (6). Prior to this reaction, the finely ground ore is mixed with hydrochloric acid to convert the calcium carbonates and iron oxides to water-soluble chlorides. [Pg.474]

First Carbonation. The process stream OH is raised to 3.0 with carbon dioxide. Juice is recycled either internally or in a separate vessel to provide seed for calcium carbonate growth. Retention time is 15—20 min at 80—85°C. OH of the juice purification process streams is more descriptive than pH for two reasons first, all of the important solution chemistry depends on reactions of the hydroxyl ion rather than of the hydrogen ion and second, the nature of the C0 2 U20-Ca " equiUbria results in a OH which is independent of the temperature of the solution. AH of the temperature effects on the dissociation constant of water are reflected by the pH. [Pg.26]

Both prototypal questions related illustrate the need for a successhil technical service professional to have a strong understanding of the customer s apphcations and processes, within proper intellectual property considerations. This need for a thorough understanding is not always straightforward. A common example of the complications that can arise is provided from the paint (qv) industry (11). If, for instance, a calcium carbonate suppHer would like a paint manufacturer to use their material versus a competitive one, the onus is on the suppHer to show that the material can be successfully used in the paint formula of interest. However, many such formulas are held as proprietary. The technical service professional therefore does not know the components of the paint. This would lead to an unworkable situation from an evaluation standpoint save for the fact that the paint company may supply a miHbase or other intermediate form of the paint to allow a proper comparison of carbonates to be carried out. Thus mutual benefits can result and no loss of proprietary information occur. [Pg.378]


See other pages where Calcium carbonate processing is mentioned: [Pg.171]    [Pg.118]    [Pg.171]    [Pg.118]    [Pg.284]    [Pg.143]    [Pg.502]    [Pg.46]    [Pg.164]    [Pg.231]    [Pg.425]    [Pg.428]    [Pg.513]    [Pg.165]    [Pg.179]    [Pg.179]    [Pg.21]    [Pg.270]    [Pg.8]    [Pg.53]    [Pg.129]    [Pg.499]    [Pg.18]    [Pg.26]    [Pg.27]    [Pg.117]    [Pg.120]    [Pg.392]    [Pg.164]   
See also in sourсe #XX -- [ Pg.57 ]




SEARCH



Calcium carbonate

Calcium carbonate processing aids

Carbonation process

Carbonization process

Flotation Process for Calcium Carbonate Recovery from Water Treatment Sludges

Flotation process, calcium carbonate recovery

Precipitated calcium carbonate production process

Process carbonate

© 2024 chempedia.info