Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Butylene forms

They readily undergo polymerization when treated with strong sulphuric acid or with zinc chloride that is, two or more molecules of butylene form new compounds by addition to each other. From butylene, C4H8, can be prepared in this way dibutylene, CgHie, which is an octylene, and tributylene, C]2H24, which is a dodecylene. This polymerization is, no doubt, due to the unsaturation produced by the double bond, although the reaction is not shown by ethylene. [Pg.55]

For general reactions see olefins. The butylenes are used to prepare 2-butanol. I-Butene and isobutene are formed into widely used polymers. [Pg.72]

It is not advisable to distil the mixture almost to dryness, since, towards the end of the distillation, the inflammable butylene is formed. Butylene formation is avoided by conducting the distillation in two stages as described. [Pg.282]

Butadiene Separation. Solvent extraction is used in the separation of butadiene (qv) [106-99-0] from other C-4 hydrocarbons in the manufacture of synthetic mbber. The butadiene is produced by catalytic dehydrogenation of butylene and the Hquid product is then extracted using an aqueous cuprammonium acetate solution with which the butadiene reacts to form a complex. Butadiene is then recovered by stripping from the extract. Distillation is a competing process. [Pg.79]

Polyester sheet products may be produced from amorphous poly(ethylene terephalate) (PET) or partiaHy crystallized PET. Acid-modified (PETA) and glycol modified (PETG) resins are used to make ultraclear sheet for packaging. Poly(butylene terephthalate) (PBT) has also been used in sheet form. Liquid-crystal polyester resins are recent entries into the market for specialty sheet. They exhibit great strength, dimensional stabHity, and inertness at temperatures above 250°C (see Polyesters,thermoplastic). [Pg.377]

All lation. The combination of olefins with paraffins to form higher isoparaffins is termed alkylation (qv). Alkylate is a desirable blendstock because it has a relatively high octane number and serves to dilute the total aromatics content. Reduction of the olefins ia gasoline blendstocks by alkylation also reduces tail pipe emissions. In refinery practice, butylenes are routinely alkylated by reaction with isobutane to produce isobutane—octane (26). In some plants, propylene and/or pentylenes (amylenes) are also alkylated (27). [Pg.207]

Propylene, butylenes, or amylenes are combiaed with isobutane ia the presence of an acid catalyst, eg, sulfuric acid or hydrofluoric acid, at low temperatures (1—40°C) and pressures, 102—1035 kPa (1—10 atm). Sulfuric acid or hydrogen fluoride are the catalysts used commercially ia refineries. The acid is pumped through the reactor and forms an emulsion with reactants, and the emulsion is maintained at 50% acid. The rate of deactivation varies with the feed and isobutane charge rate. Butene feeds cause less acid consumption than the propylene feeds. [Pg.207]

Small amounts of polymer-grade terephthaHc acid and dimethyl terephthalate are used as polymer raw materials for a variety of appHcations, eg, adhesives and coatings. They are also used to make high performance polymers or engineering resins. Poly(ethylene terephthalate) is itself an engineering resin, although one more widely used is poly (butylene) terephthalate, formed by reaction with 1,4-butanediol as the comonomer. [Pg.492]

Other by-products include acetone, carbonaceous material, and polymers of propylene. Minor contaminants arise from impurities in the feed. Ethylene and butylenes can form traces of ethyl alcohol and 2-butanol. Small amounts of / -propyl alcohol carried through into the refined isopropyl alcohol can originate from cyclopropane [75-19-4] in the propylene feed. Acetone, an oxidation product, also forms from thermal decomposition of the intermediate sulfate esters, eg. [Pg.107]

The carbon—carbon double bond is the distinguishing feature of the butylenes and as such, controls their chemistry. This bond is formed by sp orbitals (a sigma bond and a weaker pi bond). The two carbon atoms plus the four atoms ia the alpha positions therefore He ia a plane. The pi bond which ties over the plane of the atoms acts as a source of electrons ia addition reactions at the double bond. The carbon—carbon bond, acting as a substitute, affects the reactivity of the carbon atoms at the alpha positions through the formation of the aHyUc resonance stmcture. This stmcture can stabilize both positive and... [Pg.362]

Electrophile Addition. The addition of electrophilic (acidic) reagents HZ involves two steps the slow transfer of hydrogen ion from Z to the butylene to form a carbocation and, a rapid combination of the carbocation with the base Z. [Pg.363]

Sulfuric acid is about one thousand times more reactive with isobutylene than with the 1- and 2-butenes, and is thereby very useful in separating isobutylene as tert-huty alcohol from the other butenes. The reaction is simply carried out by bubbling or stirring the butylenes into 45—60% H2SO4. This results in the formation of tert-huty hydrogen sulfate. Dilution with water followed by heat hydrolyzes the sulfate to form tert-huty alcohol and sulfuric acid. The Markovnikov addition implies that isobutyl alcohol is not formed. The hydration of butylenes is most important for isobutylene, either directiy or via the butyl hydrogen sulfate. [Pg.363]

Alkylation of isobutylene and isobutane in the presence of an acidic catalyst yields isooctane. This reaction proceeds through the same mechanism as dimerization except that during the last step, a proton is transferred from a surrounding alkane instead of one being abstracted by a base. The cation thus formed bonds with the base. Alkylation of aromatics with butylenes is another addition reaction and follows the same general rules with regard to relative rates and product stmcture. Thus 1- and 2-butenes yield j -butyl derivatives and isobutylene yields tert-huty derivatives. [Pg.364]

Free-Radical Addition. Free-radical attack on a butylene occurs so that the most stable radical carbon stmcture forms. Thus, in peroxide-catalyzed addition of hydrogen haUdes, the addition is anti-Markovnikov. [Pg.364]

A second route based on olefin disproportionation was developed by Phillips Petroleum (131). Here isobutylene reacts with propylene to form isoamylenes, which are dehydrogenated to isoprene. 2-Butene can be used in place of propylene since it also yields isoamylene and the coproduct propylene can be recycled. Use of mixed butylenes causes the formation of pentenes, giving piperjlene, which contaminates isoprene. [Pg.374]

Commercially, anionic polymerization is limited to three monomers styrene, butadiene, and isoprene [78-79-5], therefore only two useful A—B—A block copolymers, S—B—S and S—I—S, can be produced direcdy. In both cases, the elastomer segments contain double bonds which are reactive and limit the stabhity of the product. To improve stabhity, the polybutadiene mid-segment can be polymerized as a random mixture of two stmctural forms, the 1,4 and 1,2 isomers, by addition of an inert polar material to the polymerization solvent ethers and amines have been suggested for this purpose (46). Upon hydrogenation, these isomers give a copolymer of ethylene and butylene. [Pg.15]

When earbon atoms are linked by a double bond the eompounds are ealled olefins. Sinee these moleeules eontain less than the maximum quantity of hydrogen they are termed unsaturated. Examples inelude ethylene, propylene, and butylene. Note that the latter ean exist in several forms ... [Pg.35]

Low molecular weight olefins ranging from to Q, are produced by the polymerization of propylene or butylenes over a supported phosphorie acid catalyst. The product of this polymerization is a series of highly branched olefins ranging from dimers to pentamers. Some fragmentation of the polymers formed takes place in the reactor, so appreciable quantities of olefins are obtained which are not integral multiples of the monomer units. [Pg.106]

Figure 11.4-2 shows process flows for an HF alkylation unit. The three sections are 1) reaction, 2). settling and 3) fractionation. In the reaction section isobutane feed is mixed with the olefin feed (usually propylene and butylene) in approximately a 10 or 15 to 1 ratio. In the presence of the HF acid catalyst the olefins react to form alkylate for gasoline blending. The exothermic reaction requires water cooling. The hydrocarbon/HF mixture goes to the settling... [Pg.440]

The most important olefins used for the production of petrochemicals are ethylene, propylene, the butylenes, and isoprene. These olefins are usually coproduced with ethylene by steam cracking ethane, LPG, liquid petroleum fractions, and residues. Olefins are characterized by their higher reactivities compared to paraffinic hydrocarbons. They can easily react with inexpensive reagents such as water, oxygen, hydrochloric acid, and chlorine to form valuable chemicals. Olefins can even add to themselves to produce important polymers such as polyethylene and polypropylene. Ethylene is the most important olefin for producing petrochemicals, and therefore, many sources have been sought for its production. The following discusses briefly, the properties of these olefmic intermediates. [Pg.32]

It seems that silver is a unique epoxidation catalyst for ethylene. All other catalysts are relatively ineffective, and the reaction to ethylene is limited among lower olefins. Propylene and butylenes do not form epoxides through this route. ... [Pg.191]

Compound A was affected most by the irradiation, Compound B least, and Compound C intermediate. The effect of the irradiation on cohesion increased with increasing irradiation dose and temperature. The iso-butylene-isoprene copolymer in Compound A and Compound C degrades during irradiation (9), becoming softer after irradiation. Since the seam of a can is formed before irradiation, some softening of the compound in the seam is not detrimental to the integrity of the seam. [Pg.33]

Another important type of condensation polymer are the linear polyesters, such as poly (ethylene terephthalate) (PET) and poly (butylene terephthalate) (PBT). Copolymers of polyesters and PA have been studied in detail, and it has been shown that random copolyesteramides have a low structural order and a low melting temperature. This is even the case for structurally similar systems such as when the group between the ester unit is the same as that between the amide unit, as in caprolactam-caprolactone copolymers (Fig. 3.10).22 Esters and amide units have different cell structures and the structures are not therefore isomorphous. If block copolymers are formed of ester and amide segments, then two melting temperatures are present. [Pg.146]

Weiss et al. [75] have synthesized Na and Zn salt of sulfonated styrene(ethylene-co-butylene)-styrene triblock ionomer. The starting material is a hydrogenated triblock copolymer of styrene and butadiene with a rubber mid-block and PS end-blocks. After hydrogenation, the mid-block is converted to a random copolymer of ethylene and butylene. Ethyl sulfonate is used to sulfonate the block copolymer in 1,2-dichloroethane solution at 50°C using the procedure developed by Makowski et al. [76]. The sulfonic acid form of the functionalized polymer is recovered by steam stripping. The neutralization reaction is carried out in toluene-methanol solution using the appropriate metal hydroxide or acetate. [Pg.116]

SEES with oil leads to the transition from lamellar morphology to micellar morphology [15]. This transformation is reflected in the above images of pure SEES and its SEES/oil = 60 40 composition. The loading leads to an increase of the structural factor from 21 to 53 nm. Therefore, the incorporation of oil to ethylene-butylene blocks induced larger separation of micelles formed predominantly by styrene blocks. [Pg.568]

Poly(butylene terephthalate) (PBT) (1) resins are semicrystalline thermoplastics used in a wide variety of applications, most commonly in durable goods that are formed by injection molding. Applications include electronic and communications equipment, computers, televisions, kitchen and household appliances, industrial equipment, lighting systems, gardening and agricultural equipment, pumps, medical devices, food handling systems, handles, power and hand tools, bobbins and spindles, and automotive parts in both under-the-hood and exterior applications. Additionally, PBT is very widely used to form electrical connectors. PBT, through its many blended products, can be tailored to suit numerous applications. [Pg.293]

It should additionally be noted that a number of the paths of the schemes above have received some confirmation in a number of literature reports dealing with the photolysis and photo-oxidation of other polyesters [32-35], Because these reports investigated poly(butylene terephthalate) (PBT), poly(ethylene naphthalate) and poly(butylene naphthalate), however, they may not have direct application to understanding of the processes involved in PET and PECT and so have not been discussed in this present chapter. All do contain support for the formation of radicals leading to CO and C02 evolution, as well as the hydrogen abstraction at glycolic carbons to form hydroperoxides which then decompose to form alkoxy radicals and the hydroxyl radical. These species then were postulated to undergo further reaction consistent with what we have proposed above. [Pg.637]


See other pages where Butylene forms is mentioned: [Pg.98]    [Pg.98]    [Pg.70]    [Pg.287]    [Pg.471]    [Pg.14]    [Pg.361]    [Pg.221]    [Pg.225]    [Pg.10]    [Pg.287]    [Pg.200]    [Pg.285]    [Pg.200]    [Pg.201]    [Pg.202]    [Pg.310]    [Pg.121]    [Pg.246]    [Pg.408]    [Pg.446]    [Pg.496]    [Pg.239]   


SEARCH



Butylenes

© 2024 chempedia.info