Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mixture random

A particular advantage of the low-mode search is that it can be applied to botli cyclic ajic acyclic molecules without any need for special ring closure treatments. As the low-mod> search proceeds a series of conformations is generated which themselves can act as starting points for normal mode analysis and deformation. In a sense, the approach is a system ati( one, bounded by the number of low-frequency modes that are selected. An extension of th( technique involves searching random mixtures of the low-frequency eigenvectors using Monte Carlo procedure. [Pg.495]

Commercially, anionic polymerization is limited to three monomers styrene, butadiene, and isoprene [78-79-5], therefore only two useful A—B—A block copolymers, S—B—S and S—I—S, can be produced direcdy. In both cases, the elastomer segments contain double bonds which are reactive and limit the stabhity of the product. To improve stabhity, the polybutadiene mid-segment can be polymerized as a random mixture of two stmctural forms, the 1,4 and 1,2 isomers, by addition of an inert polar material to the polymerization solvent ethers and amines have been suggested for this purpose (46). Upon hydrogenation, these isomers give a copolymer of ethylene and butylene. [Pg.15]

A-Substituted polypyrazoles can also be obtained by using A-alkylhydrazines, and it should be noted that these polymers consist of a random mixture of head-to-head and head-to-tail structures. Other syntheses of polypyrazoles have been described in the literature. Thus polyphenylene pyrazoles (742) and (743) occurred when m- or p-diethynyl-benzene (DEB) reacted with 1,3-dipoles such as sydnones or bis(nitrilimines) (Scheme 64). [Pg.300]

Harnhy, N., The Estimation of the Variance of Samples Withdrawn from a Random Mixture of Multi-Sized Particles, Chem. Eng. No. 214 CE270-71 (1967). [Pg.1762]

Measuring Uniformity Except for cases in which a coating of one ingredient with another takes place, the theoretical end result of mixing will not be an arrangement in which one type of particle is directly next to a different type. Rather, the theoretical end result when random tumbling takes place will be a random mixture along the lines shown in Fig. 19-8. [Pg.1763]

The variation among spot samples of known size can be predicted theoretically for a random mixture and used as a gmde to determine how closely random blending of the ingredients has been approached. [Pg.1763]

This model is appropriate for random mixtures of elements in which tire pairwise bonding energies remain constant. In most solutions it is found that these are dependent on composition, leading to departures from regular solution behaviour, and therefore the above equations must be conhned in use to solute concentrations up to about 10 mole per cent. [Pg.354]

A composite material for a car-repair kit consists of a random mixture of short glass fibres in a polyester matrix. Estimate the maximum toughness of the composite. You may assume that the volume fraction of glass is 30% the fibre diameter is 15 pm the fracture strength of the fibres is 1400 MPa and the shear strength of the matrix is 30 MPa. [Pg.276]

Complete hydrolysis of RNA by alkali yields a random mixture of 2 -NMPs and 3 -NMPs. [Pg.346]

When a pure metal A is alloyed with a small amount of element B, the result is ideally a homogeneous random mixture of the two atomic species A and B, which is known as a solid solution of in 4. The solute B atoms may take up either interstitial or substitutional positions with respect to the solvent atoms A, as illustrated in Figs. 20.37a and b, respectively. Interstitial solid solutions are only formed with solute atoms that are much smaller than the solvent atoms, as is obvious from Fig. 20.37a for the purpose of this section only three interstitial solid solutions are of importance, i.e. Fc-C, Fe-N and Fe-H. On the other hand, the solid solutions formed between two metals, as for example in Cu-Ag and Cu-Ni alloys, are always substitutional (Fig. 20.376). Occasionally, substitutional solid solutions are formed in which the... [Pg.1271]

Partial hydrolysis of a peptide can be carried out either chemically with aqueous acid or enzymatically. Acidic hydrolysis is unselective and leads to a more or less random mixture of small fragments, but enzymatic hydrolysis is quite specific. The enzyme trypsin, for instance, catalyzes hydrolysis of peptides only at the carboxyl side of the basic amino acids arginine and lysine chymotrypsin cleaves only at the carboxyl side of the aryl-substituted amino acids phenylalanine, tyrosine, and tryptophan. [Pg.1033]

The common disadvantage of both the free volume and configuration entropy models is their quasi-thermodynamic approach. The ion transport is better described on a microscopic level in terms of ion size, charge, and interactions with other ions and the host matrix. This makes a basis of the percolation theory, which describes formally the ion conductor as a random mixture of conductive islands (concentration c) interconnected by an essentially non-conductive matrix. (The mentioned formalism is applicable not only for ion conductors, but also for any insulator/conductor mixtures.)... [Pg.141]

Soon after this report, the group of M. Yaros, also working in Boulder, was able to demonstrate ribozyme activity with a much higher performance (Illangsekare, 1995). Using a random mixture of many billions of RNA sequences, they selected one species which was able to catalyse the aminoacyl synthesis. In other words, the selected ribozyme aminoacylated its 2 (3 ) end when offered phenylalanyl-AMP the addition of Mg2+ and Ca2+ was necessary. The catalysed reaction was about 105 times faster than in the absence of ribozyme. Thus the group was able to show that a fundamental reaction of contemporary protein biosynthesis can also be catalysed by a ribozyme (see Sect. 5.3.2). The assiduous search for further activities continues. [Pg.163]

The initial transition of dissolved silicate molecules into solid nanoparticles is perhaps the least explored step in the synthesis of zeolites. One impediment to understanding this mysterious step is the poorly elucidated molecular composition of dissolved particles. The major mechanistic ideas for the formation of zeolites approach these structures differently i) many researchers believe that secondary building units (SBU) must be present to form initial nanoslabs [1,2] ii) some others prioritize the role of monomers to feed artificially introduced crystal nuclei or assume that even these nuclei form via appropriate aggregation of monomers [3] iii) silicate solutions are also frequently viewed as random mixtures of various siloxane polymers which condense first into an irregular gel configuration which can rearrange subsequently into a desired crystal nucleus at appropriate conditions [4,5],... [Pg.35]

A solid solution is a crystal structure in which two (or more) atom types are arranged at random over the sites normally occupied by one atom type alone. For example, in the comndum structure solid solution formed by Cr2C>3 and AI2O3, a random mixture of Cr3+ and Al3+ ions occupy the cation sites that are only occupied by one of these in the parent phases. The formula of the solid solution materials is written (Al i JCCrJC)203. In this example, x can vary continuously between 0 and 1.0. In some cases, especially when the atoms involved have different sizes, only partial solid solutions are found, characterized by a composition range in which the span of x is smaller than 1.0. Solid solutions are widely exploited as both the chemical and physical properties of the solid can be varied sensitively by changing the relative amounts of the components of the solid solution. [Pg.198]

Both rust and oxide scales are usually mixtures of iron oxides vith other Fe (e. g. siderite) and non-Fe compounds (CaCOs). In some cases there is a more or less random mixture of components, vhereas in others, the different oxides are arranged in layers to form duplex or triplex scales. Layer-type rust arises as a result of potential or chemical gradients across the film. As these gradients vary ivith film thickness, the composition of the rust changes with the distance from the metal. On the whole, if Fe " and Fe" are present, the oxide containing Fe" is found in the inner layer of the rust. [Pg.498]

Above room temperature, the mobile 3 d electrons are well described by a random mixture of Fel" and FeB ions with the mobile electrons diffusing from iron to iron, some being thermally excited to FeA ions, but the motional enthalpy on the B sites is AH < kT. As the temperature is lowered through Tc, the Seebeck coefficient shows the influence of a change in mobile-electron spin degeneracy, and at room temperature the Seebeck coefficient is enhanced by correlated multielectron jumps that provide a mobile electron access to all its nearest neighbors. The electron-hopping time xi, = coi = 10" s... [Pg.25]

Figure 2.2 The spontaneous self-aggregation of membranogenic surfactants into a vesicle, with an interior water pool that can host water-soluble molecules. If this self-aggregation takes place also in the presence of hydrophobic molecules, and/or ionic molecules, these can organize themselves into the bilayer or on the surface of the vesicle. A realistic scenario of the emergence of life can be based on a gradual transition from random mixtures of simple organic molecules to spatially ordered assemblies, displaying primitive forms of cellular compartmentation, selfreproduction, and catalysis. Figure 2.2 The spontaneous self-aggregation of membranogenic surfactants into a vesicle, with an interior water pool that can host water-soluble molecules. If this self-aggregation takes place also in the presence of hydrophobic molecules, and/or ionic molecules, these can organize themselves into the bilayer or on the surface of the vesicle. A realistic scenario of the emergence of life can be based on a gradual transition from random mixtures of simple organic molecules to spatially ordered assemblies, displaying primitive forms of cellular compartmentation, selfreproduction, and catalysis.

See other pages where Mixture random is mentioned: [Pg.1762]    [Pg.1763]    [Pg.15]    [Pg.884]    [Pg.320]    [Pg.456]    [Pg.117]    [Pg.135]    [Pg.400]    [Pg.970]    [Pg.238]    [Pg.86]    [Pg.486]    [Pg.382]    [Pg.382]    [Pg.241]    [Pg.245]    [Pg.406]    [Pg.33]    [Pg.94]    [Pg.1069]    [Pg.73]    [Pg.197]    [Pg.80]    [Pg.97]    [Pg.611]    [Pg.125]    [Pg.700]    [Pg.439]    [Pg.53]    [Pg.82]   
See also in sourсe #XX -- [ Pg.11 , Pg.28 , Pg.29 , Pg.30 , Pg.40 , Pg.95 ]

See also in sourсe #XX -- [ Pg.231 ]




SEARCH



© 2024 chempedia.info