Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer biocompatible

The AFM is set up for a standard CM experiment (see Sect. 3.2). A very soft CM cantilever (0.03 N/m) is inserted into the cantilever holder, the laser is aligned, and the photodiode is moved such that the laser spot is centered. Following the crude approach, the system is equilibrated for several hours. [Pg.140]

The experiment must be carried out with minimized forces and very small scan rates, because the adhering bacteria may be swept away by the scanned tip in case that the feedback loop does not correct the z-position of the piezo sufficiently rapidly. [Pg.140]

Adhesion of skin-borne bacteria to the surfaces modified by adsorbed poly (ethyleneoxide)-poly (propyleneoxide) copolymers can be assessed in CM-AFM height images. As seen in Fig. 3.51, cells adhering to the PS-silanized glass slides (a, b) clearly show that these surfaces are unsuitably modified by contrast, the absence of cell adhesion on the Pluronics modified samples (c,d) demonstrates the efficiency of the surface modification. [Pg.140]


Applications. Polymers with small alkyl substituents, particularly (13), are ideal candidates for elastomer formulation because of quite low temperature flexibiUty, hydrolytic and chemical stabiUty, and high temperature stabiUty. The abiUty to readily incorporate other substituents (ia addition to methyl), particularly vinyl groups, should provide for conventional cure sites. In light of the biocompatibiUty of polysdoxanes and P—O- and P—N-substituted polyphosphazenes, poly(alkyl/arylphosphazenes) are also likely to be biocompatible polymers. Therefore, biomedical appHcations can also be envisaged for (3). A third potential appHcation is ia the area of soHd-state batteries. The first steps toward ionic conductivity have been observed with polymers (13) and (15) using lithium and silver salts (78). [Pg.260]

M. Szycher, Biocompatible Polymers, Metals and Composites, Technomic Publishing Co., Inc., Lancaster, Pa., 1983. [Pg.193]

The realization of sensitive bioanalytical methods for measuring dmg and metaboUte concentrations in plasma and other biological fluids (see Automatic INSTRUMENTATION BlosENSORs) and the development of biocompatible polymers that can be tailor made with a wide range of predictable physical properties (see Prosthetic and biomedical devices) have revolutionized the development of pharmaceuticals (qv). Such bioanalytical techniques permit the characterization of pharmacokinetics, ie, the fate of a dmg in the plasma and body as a function of time. The pharmacokinetics of a dmg encompass absorption from the physiological site, distribution to the various compartments of the body, metaboHsm (if any), and excretion from the body (ADME). Clearance is the rate of removal of a dmg from the body and is the sum of all rates of clearance including metaboHsm, elimination, and excretion. [Pg.224]

Nowadays, a strategic area of research is the development of polymers based on carbohydrates due to the worldwide focus on sustainable materials. Since the necessary multi-step synthesis of carbohydrate-based polymers is not economical for the production of commodity plastics, functionalization of synthetic polymers by carbohydrates has become a current subject of research. This aims to prepare new bioactive and biocompatible polymers capable of exerting a temporary therapeutic function. The large variety of methods of anchoring carbohydrates onto polymers as well as the current and potential applications of the functionalized polymers has been discussed recently in a critical review [171]. Of importance is that such modification renders not only functionality but also biodegradability to the synthetic polymers. [Pg.23]

It was therefore particularly inteipesting to investiage whether it would be possible to replace BPA by various derivatives of L-tyrosine as monomeric building blocks for the synthesis of poly-(iminocarbonates). In order to be practically useful in drug delivery applications, the replacement of BPA by derivatives of tyrosine must give rise to mechanically strong yet fully biocompatible polymers. [Pg.213]

One of the most successful conjugate polymer systems was developed by Duncan and Kopecek (25). The polymer carrier used in their system is poly [N(2-hydroxypropyl) methacrylamide] a biocompatible polymer that was originally developed as a plasma extender. They have evaluated a number of polymer conjugated drugs for cancer chemotherapy with interesting results. The attachment of the drug is through a peptidyl spacer pendent to the polymer backbone. These peptides links are stable in aqueous media but are readily hydrolyzed intracellularly... [Pg.14]

Many kinds of nonbiodegradable vinyl-type hydrophilic polymers were also used in combination with aliphatic polyesters to prepare amphiphilic block copolymers. Two typical examples of the vinyl-polymers used are poly(/V-isopropylacrylamide) (PNIPAAm) [149-152] and poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) [153]. PNIPAAm is well known as a temperature-responsive polymer and has been used in biomedicine to provide smart materials. Temperature-responsive nanoparticles or polymer micelles could be prepared using PNIPAAm-6-PLA block copolymers [149-152]. PMPC is also a well-known biocompatible polymer that suppresses protein adsorption and platelet adhesion, and has been used as the hydrophilic outer shell of polymer micelles consisting of a block copolymer of PMPC -co-PLA [153]. Many other vinyl-type polymers used for PLA-based amphiphilic block copolymers were also introduced in a recent review [16]. [Pg.76]

Moro T, Takatori Y, Ishihara K et al (2004) Surface grafting of artihcial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nat Mater 3 829-836... [Pg.166]

Hydrophobic polymer materials that slowly release N O can be used on the surface of medical devices. Many medical devices suffer from the surface adhesion of blood platelets. To minimize this thrombogenic effect, blood thinners such as heparin, coumarin, and aspirin are often used. However, systemic administration of antiplatelet agents could increase the risk of uncontrolled bleeding elsewhere in the body. In contrast, biocompatible polymer films would solve this problem [153]. It is possible to create polymeric surfaces that mimic the inner surface of a blood vessel by... [Pg.24]

Polyvinyl alcohol (PVA), which is a water soluble polyhidroxy polymer, is one of the widely used synthetic polymers for a variety of medical applications [197] because of easy preparation, excellent chemical resistance, and physical properties. [198] But it has poor stability in water because of its highly hydrophilic character. Therefore, to overcome this problem PVA should be insolubilized by copolymerization [43], grafting [199], crosslinking [200], and blending [201], These processes may lead a decrease in the hydrophilic character of PVA. Because of this reason these processes should be carried out in the presence of hydrophilic polymers. Polyfyinyl pyrrolidone), PVP, is one of the hydrophilic, biocompatible polymer and it is used in many biomedical applications [202] and separation processes to increase the hydrophilic character of the blended polymeric materials [203,204], An important factor in the development of new materials based on polymeric blends is the miscibility between the polymers in the mixture, because the degree of miscibility is directly related to the final properties of polymeric blends [205],... [Pg.156]

HPMA copolymers are water-soluble biocompatible polymers, widely used in anticancer drug delivery (reviewed in Reference [22]). HPMA copolymers containing reactive groups at side-chain termini were previously used for the modification of trypsin [23], chymotrypsin [23,24], and acetylcholinesterase [25]. The modification dramatically increased the acetylcholinesterase survival in the blood stream of mice and the thermostability of modified enzymes when compared to the native proteins. However, the modification involved multipoint attachment of the copolymers to the substrates, which may cause crosslinking. To modify proteins or biomedical surfaces by one point attachment, semitelechelic polymers should be used. [Pg.13]

Microspheres and nanoparticles often consist of biocompatible polymers and belong either to the soluble or the particle type carriers. Besides the aforementioned HPMA polymeric backbone, carriers have also been prepared using dextrans, ficoll, sepharose or poly-L-lysine as the main carrier body. More recently alginate nanoparticles have been described for the targeting of antisense oligonucleotides [28]. As with other polymeric carrier systems, the backbone can be modified with e.g. sugar molecules or antibody fragments to introduce cellular specificity. [Pg.7]

Protein drugs have been formulated with excipients intended to stabilize the protein in the milieu of the pharmaceutical product. It has long been known that a variety of low molecular weight compounds have the effect of preserving the activity of proteins and enzymes in solution. These include simple salts, buffer salts and polyhydroxylated compounds such as glycerol, mannitol, sucrose and polyethylene glycols. Certain biocompatible polymers have also been applied for this purpose such as polysaccharides and synthetic polymers such as polyvinyl pyrrolidone and even nonionic surfactants. [Pg.39]

Jauregui, H., Hayner. N.. Solomon, B., and GaUetti, P. Hybrid Artificial Liver, in Biocompatible Polymers. Metals, and Composites. Szycher, M., Ed., Technomics Publishing, Lancaster. PA, 1983, chap. 39. [Pg.11]

Metal containing polymers have emerged as a new generation material with tremendous potential in fields like superconducting materials, ultra-high strength materials, liquid ciystals and biocompatible polymers. [Pg.89]

Phenomena at the Biocompatible Polymer-Living Tissue Interface.91... [Pg.66]

All conclusions made above are equally valid for all hydrolyzing , fine-porous and bulk biocompatible polymers. [Pg.91]

As with normal hydrocarbon-based surfactants, polymeric micelles have a core-shell structure in aqueous systems (Jones and Leroux, 1999). The shell is responsible for micelle stabilization and interactions with plasma proteins and cell membranes. It usually consists of chains of hydrophilic nonbiodegradable, biocompatible polymers such as PEO. The biodistribution of the carrier is mainly dictated by the nature of the hydrophilic shell (Yokoyama, 1998). PEO forms a dense brush around the micelle core preventing interaction between the micelle and proteins, for example, opsonins, which promote rapid circulatory clearance by the mononuclear phagocyte system (MPS) (Papisov, 1995). Other polymers such as pdty(sopropylacrylamide) (PNIPA) (Cammas etal., 1997 Chung etal., 1999) and poly(alkylacrylicacid) (Chen etal., 1995 Kwon and Kataoka, 1995 Kohorietal., 1998) can impart additional temperature or pH-sensitivity to the micelles, and may eventually be used to confer bioadhesive properties (Inoue et al., 1998). [Pg.310]

The use of polymeric materials is emphasized here because advances in the uses of biocompatible polymers for injuries and wounds have outpaced the dissemination of information. Innovative polymer technology was applied to the common combat and other trauma wounds associated with damaged soft tissue and bleeding. [Pg.184]


See other pages where Polymer biocompatible is mentioned: [Pg.271]    [Pg.55]    [Pg.105]    [Pg.33]    [Pg.194]    [Pg.27]    [Pg.573]    [Pg.199]    [Pg.21]    [Pg.26]    [Pg.31]    [Pg.141]    [Pg.206]    [Pg.101]    [Pg.96]    [Pg.268]    [Pg.100]    [Pg.277]    [Pg.326]    [Pg.55]    [Pg.104]    [Pg.252]    [Pg.414]    [Pg.271]    [Pg.287]    [Pg.59]    [Pg.65]    [Pg.746]    [Pg.131]   
See also in sourсe #XX -- [ Pg.139 , Pg.140 , Pg.141 , Pg.142 , Pg.143 , Pg.144 ]

See also in sourсe #XX -- [ Pg.148 , Pg.151 ]




SEARCH



Adhesive biocompatible polymers

Artificial polymers biocompatible

Biocompatibility

Biocompatibility biodegradable polymers

Biocompatibility elastic protein-based polymer

Biocompatibility of Biodegradable Polymers

Biocompatibility of conducting polymers

Biocompatibility of polymers

Biocompatibility polymer stability

Biocompatibility protein-based polymer

Biocompatible Polymer Development An Historical Perspective

Biocompatible Polymers Used as Hydrophobic Matrices

Biocompatible polymers, molecular

Biocompatible polymers, molecular design

Biocompatible polymers, synthetic

Biocompatible shape memory polymers

Biocompatible, biodegradable polymer

Biomedical polymers biocompatibility

Biopolymer biocompatible polymer matrix

Conducting polymers biocompatibility

Electronic polymers biocompatibility

Hydrophilic polymers, polymer brushes biocompatibility

Polymer Structure, Cytotoxicity and Biocompatibility Relationships

Polymer biocompatibility and toxicity

Polymer biocompatibility enhancement

Polymer biocompatibility enhancement results

Polymers biocompatibility

Polymers biocompatibility

Shape memory polymer biocompatibility

© 2024 chempedia.info