Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzaldehyde Compound

Once a molecule is modified with a hydrazine reagent and another molecule is modified with the benzaldehyde compound, they may be combined to form the final conjugate, which will result in a hydrazone linkage between the two molecules. In addition, chemoselective ligation using aldehyde/hydrazine reactions may be done to immobilize biomolecules. In this regard, one modified component may be a surface and the other one an antibody, protein, or oligonucleotide destined for immobilization onto the surface. [Pg.675]

Triphenylmethane dyes are usually prepared in two steps 1) condensation of an N,N-dialkylaniline with a benzaldehyde compound and 2) oxidation of the resultant leuco base (27). The synthesis of C.I. Basic Green 4 (Malachite Green) is given as an example in Fig. 13.106. Alternatively, C.I. Acid Green 50 is prepared in three steps 1) condensation of... [Pg.565]

A proposed scheme for increasing the reactivity of lignin and thus enhancing its usefulness as an alternative adhesive feedstock is presented in Figure 1. The first step is to perform an oxidative-cleavage reaction to form phenolic benzaldehyde compounds. [Pg.72]

Prediction of partition coefficient and toxicity for benzaldehyde compounds by their capacity factors and various molecular descriptors. Chemosphere, 42, 899-907. [Pg.1018]

A series of dibenzooxaaza macroeyeles have been prepared by a nontemplate cyclization of 1,5-diamino-3-pentanol and various bis-benzaldehyde compounds. The resulting cyclic bis Schiff base was reduced with sodium borohydride to give the dibenzodiaza-crowns in overall yields of 10-20%... [Pg.413]

Dimethoxybenzyl glycosides, for example 9, on treatment with DDQ in the presence of an alcohol in acetonitrile, degrade oxidatively to give the corresponding benzaldehyde compound and a carbocation which results in the formation of glycosides. Yields are in the 60-95% range, but the stereoselectivity is not high. " ... [Pg.17]

It should be noted that aliphatic compounds (except the paraffins) are usually oxidised by concentrated nitric acid, whereas aromatic compounds (including the hydrocarbons) are usually nitrated by the concentrated acid (in the presence of sulphuric acid) and oxidised by the dilute acid. As an example of the latter, benzaldehyde, CjHsCHO, when treated with concentrated nitric acid gives ffi-nitrobenzaldehyde, N02CgH4CH0, but with dilute nitric acid gives benzoic acid, CgHgCOOH. [Pg.112]

Aldehydes undergo condensation with primary amines with the elimination of water to give compounds known as SchifF s Bases, which can also be used to characterise aldehydes. Benzaldehyde for example condenses readily with... [Pg.230]

Many aromatic aldehydes (having the -CHO group joined directly to the benzene ring) undergo polymerisation when heated with a solution of potassium cyanide in aqueous ethanol. Thus benzaldehyde gives benzoin, a compound of double function, since it contains both a secondary alcoholic and a ketonic... [Pg.233]

To a few drops of formalin solution add a few drops of dinitro-phenylhydrazine reagent A (p. 263) a yellow precipitate is produced in the cold. Acetaldehyde and acetone give orange-coloured precipitates. Dissolve water-insoluble compounds e.g-y benzaldehyde, salicylalde-hyde, acetophenone and benzophenone) in a small volume of methanol before adding reagent B. With benzophenone the precipitate forms slowly. [Pg.334]

Bisulphite addition compound. Shake 1 ml. of benzaldehyde with about 0 5 ml. of saturated NaHSOj solution. The mixture becomes warm, and the white addition product separates (rapidly on cooling). [Pg.343]

Dissolve 1 g. of the ketomethylene compound and 1 1 g. or 2 2 g. of pure benzaldehyde (according as to whether the compound may be regarded as RCOCHjR or as RCHjCOCHjR ) in about 10 ml. of rectified (or methylated) spirit, add 0 5 ml. of 5.N -sodium hydroxide solution, shake and allow the mixture to stand for about an hour at room temperature. The benzylidene derivative usually crystallises out or will do so upon scratching the walls of the vessel with a glass rod. Filter off the solid, wash it with a little cold alcohol, and recrystallise it from absolute alcohol (or absolute industrial spirit). [Pg.345]

Place 45 g. (43 ml.) of benzal chloride (Section IV,22), 250 ml. of water and 75 g. of precipitated calcium carbonate (1) in a 500 ml. round-bottomed flask fltted with a reflux condenser, and heat the mixture for 4 hours in an oil bath maintained at 130°. It is advantageous to pass a current of carbon dioxide through the apparatus. Filter off the calcium salts, and distil the filtrate in steam (Fig. II, 40, 1) until no more oil passes over (2). Separate the benzaldehyde from the steam distillate by two extractions with small volumes of ether, distil off most of the ether on a water bath, and transfer the residual benzaldehyde to a wide-mouthed bottle or flask. Add excess of a concentrated solution of sodium bisulphite in portions with stirring or shaking stopper the vessel and shake vigorously until the odour of benzaldehyde can no longer be detected. Filter the paste of the benzaldehyde bisulphite compound at the pump... [Pg.693]

Benzaldehyde is easily oxidised by atmospheric oxygon giving, ultimately, benzoic acid. This auto-oxidation is considerably influenced by catalysts tiiose are considered to react with the unstable peroxide complexes which are the initial products of the oxidation. Catalysts which inhibit or retard auto-oxidation are termed anti-oxidants, and those that accelerate auto-oxidation are called pro-oxidants. Anti-oxidants find important applications in preserving many organic compounds, e.g., acrolein. For benzaldehyde, hydroquinone or catechol (considerably loss than U-1 per cent, is sufficient) are excellent anti-oxidants. [Pg.694]

Separations based upon differences in the chemical properties of the components. Thus a mixture of toluene and anihne may be separated by extraction with dilute hydrochloric acid the aniline passes into the aqueous layer in the form of the salt, anihne hydrochloride, and may be recovered by neutralisation. Similarly, a mixture of phenol and toluene may be separated by treatment with dilute sodium hydroxide. The above examples are, of comse, simple apphcations of the fact that the various components fah into different solubihty groups (compare Section XI,5). Another example is the separation of a mixture of di-n-butyl ether and chlorobenzene concentrated sulphuric acid dissolves only the w-butyl other and it may be recovered from solution by dilution with water. With some classes of compounds, e.g., unsaturated compounds, concentrated sulphuric acid leads to polymerisation, sulphona-tion, etc., so that the original component cannot be recovered unchanged this solvent, therefore, possesses hmited apphcation. Phenols may be separated from acids (for example, o-cresol from benzoic acid) by a dilute solution of sodium bicarbonate the weakly acidic phenols (and also enols) are not converted into salts by this reagent and may be removed by ether extraction or by other means the acids pass into solution as the sodium salts and may be recovered after acidification. Aldehydes, e.g., benzaldehyde, may be separated from liquid hydrocarbons and other neutral, water-insoluble hquid compounds by shaking with a solution of sodium bisulphite the aldehyde forms a sohd bisulphite compound, which may be filtered off and decomposed with dilute acid or with sodium bicarbonate solution in order to recover the aldehyde. [Pg.1091]

The higjily water-soluble dienophiles 2.4f and2.4g have been synthesised as outlined in Scheme 2.5. Both compounds were prepared from p-(bromomethyl)benzaldehyde (2.8) which was synthesised by reducing p-(bromomethyl)benzonitrile (2.7) with diisobutyl aluminium hydride following a literature procedure2.4f was obtained in two steps by conversion of 2.8 to the corresponding sodium sulfonate (2.9), followed by an aldol reaction with 2-acetylpyridine. In the preparation of 2.4g the sequence of steps had to be reversed Here, the aldol condensation of 2.8 with 2-acetylpyridine was followed by nucleophilic substitution of the bromide of 2.10 by trimethylamine. Attempts to prepare 2.4f from 2.10 by treatment with sodium sulfite failed, due to decomposition of 2.10 under the conditions required for the substitution by sulfite anion. [Pg.50]

Nitration using this reagent was first investigated, by Francis. He showed that benzene and some of its homologues bromobenzene, benzonitrile, benzoyl chloride, benzaldehyde and some related compounds, and phenol were mono-nitrated in solutions of benzoyl nitrate in carbon tetrachloride anilines would not react cleanly and a series of naphthols yielded dinitro compounds. Further work on the orientation of substitution associated this reagent with higher proportions of o-substitution than that brought about by nitric acid this point is discussed below ( 5.3.4). [Pg.77]

The benzylchloride compound made in the previous recipe can be converted to piperonal or benzaldehyde using a chemical called hexamine [137 p817, 37 p700, 136]. Hexamine, also known as methenamine or hexamethylenetetramine, is a weird looking chemical that is easily made from formaldehyde but is better off being purchased. [Pg.241]

Six protective groups for alcohols, which may be removed successively and selectively, have been listed by E.J. Corey (1972B). A hypothetical hexahydroxy compound with hydroxy groups 1 to 6 protected as (1) acetate, (2) 2,2,2-trichloroethyl carbonate, (3) benzyl ether, (4) dimethyl-t-butylsilyl ether, (5) 2-tetrahydropyranyl ether, and (6) methyl ether may be unmasked in that order by the reagents (1) KjCO, or NH, in CHjOH, (2) Zn in CHjOH or AcOH, (3) over Pd, (4) F", (5) wet acetic acid, and (6) BBrj. The groups may also be exposed to the same reagents in the order A 5, 2, 1, 3, 6. The (4-methoxyphenyl)methyl group (=MPM = p-methoxybenzyl, PMB) can be oxidized to a benzaldehyde derivative and thereby be removed at room temperature under neutral conditions (Y- Oikawa, 1982 R. Johansson, 1984 T. Fukuyama, 1985). [Pg.157]

Furthermore, they react with carbonyl derivatives such as acetone and benzaldehyde to give selenohydrazones identical to those prepared from the condensation of selenosemicarbazones with an a-halocarbonyl compound. [Pg.235]

The reactivity of 2-methylselenazole toward carbonyl compounds is the same as its thiazoie homolog. Reaction of 2,4-dimethylselenazole with benzaldehyde in the presence of anhydrous zinc chloride as catalyst gives 4-methyl-2-styrylselenazoie [m.p. 74-75 C (19)] (Scheme 43). [Pg.249]

To identify the carbonyl compound and the ylide required to produce a given alkene mentally disconnect the double bond so that one of its carbons is derived from a car bonyl group and the other is derived from an ylide Taking styrene as a representative example we see that two such disconnections are possible either benzaldehyde or formaldehyde is an appropriate precursor... [Pg.732]

Increased single bond character in a carbonyl group is associated with a decreased carbon—oxygen stretching frequency Among the three compounds benzaldehyde 2 4 6 trimethoxybenzaldehyde and 2 4 6 trinitrobenzaldehyde which one will have the lowest frequency carbonyl absorption" Which one will have the highest" ... [Pg.751]

Alkyl Isoquinolines. Coal tar contains small amounts of l-methylisoquinoline [1721-93-3] 3-methylisoquinoline [1125-80-0] and 1,3-dimetliylisoquinoline [1721-94-4J. The 1- and 3-methyl groups are more reactive than others in the isoquinoline nucleus and readily oxidize with selenium dioxide to form the corresponding isoquinoline aldehydes (174). These compounds can also be obtained by the hydrolysis of the dihalomethyl group. The 1- and 3-methyhsoquinolines condense with benzaldehyde in the presence of zinc chloride or acetic anhydride to produce 1- and 3-styryhsoquinolines. Radicals formed by decarboxylation of carboxyUc acids react to produce 1-aIkyhsoquinolines. [Pg.398]

Performing the titration to a potentiometric end point, rather than to a colored end point, has been shown to be the more accurate method. Since other carbonyl containing compounds also react to form the oxime and release hydrochloric acid, this test is not specific for benzaldehyde. [Pg.35]

Dibenzjiamine, [103-49-17, CgH CH2NHCH2CgH (bp, 300°C at 101.3 kPa) is produced by reaction of benzyl amine with benzaldehyde and hydrogenation of the Schiffs base. It is used in mbber and tire compounding, as a corrosion inhibitor, and as an intermediate in the production of mbber compounds and pharmaceutical products. [Pg.36]

Cinnamaldehyde, [14371-10-9] CgH CH=CHCHO (bp, 253°C at 101.3 kPa), produced by the alkaline condensation of benzaldehyde and acetaldehyde is the main ingredient in cassia oil. It is used in soap perfumes and as an intermediate in the production of other flavor and fragrance compounds. [Pg.36]

Acetalation. As polyhydroxy compounds, carbohydrates react with aldehydes and ketones to form cycHc acetals (1,13). Examples are the reaction of D-glucose with acetone and a protic or Lewis acid catalyst to form l,2 5,6-di-0-isoprop5lidene-a-D-glucofuranose [582-52-5] and its reaction with benzaldehyde to form 4,6-0-benzyhdene-D-glucopyranose [25152-90-3]. The 4,6-0-(l-carboxyethyhdine) group (related to pymvic acid) occurs naturally in some polysaccharides. [Pg.481]

Nearly all of the benzyl chloride [100-44-7], henzal chloride [98-87-3], and hen zotrichl oride /P< -(97-i manufactured is converted to other chemical intermediates or products by reactions involving the chlorine substituents of the side chain. Each of the compounds has a single primary use that consumes a large portion of the compound produced. Benzyl chloride is utilized in the manufacture of benzyl butyl phthalate, a vinyl resin plasticizer benzal chloride is hydrolyzed to benzaldehyde hen zotrichl oride is converted to benzoyl chloride. Benzyl chloride is also hydrolyzed to benzyl alcohol, which is used in the photographic industry, in perfumes (as esters), and in peptide synthesis by conversion to benzyl chloroformate [501-53-1] (see Benzyl ALCOHOL AND p-PHENETHYL ALCOHOL CARBONIC AND CARBONOCm ORIDIC ESTERS). [Pg.58]

Benzyl chloride readily forms a Grignard compound by reaction with magnesium in ether with the concomitant formation of substantial coupling product, 1,2-diphenylethane [103-29-7]. Benzyl chloride is oxidized first to benzaldehyde [100-52-7] and then to benzoic acid. Nitric acid oxidizes directly to benzoic acid [65-85-0]. Reaction with ethylene oxide produces the benzyl chlorohydrin ether, CgH CH20CH2CH2Cl (18). Benzylphosphonic acid [10542-07-1] is formed from the reaction of benzyl chloride and triethyl phosphite followed by hydrolysis (19). [Pg.59]

For the reactions of methylpyridazine 1-oxides with benzaldehyde in the presence of sodium methoxide, the order of reactivity of methyl groups at various positions is 5 > 4,6 > 3. 3-Methylpyridazine 1-oxide is converted by acetic anhydride into the 3-acetoxymethyl compound, which is easily hydrolyzed to 3-hydroxymethylpyridazine. [Pg.32]

Compound (253) is formed from benzaldehyde and methylhydroxylamine-O-sulfonic acid in 35% yield. With ethyl-substituted chloramine or hydroxylamine-O-sulfonic acid yields do not exceed 10%, which is assumed to be due to steric hindrance and is foreseeable for both carbonyl addition and O —N bond formation. [Pg.229]


See other pages where Benzaldehyde Compound is mentioned: [Pg.911]    [Pg.357]    [Pg.586]    [Pg.911]    [Pg.357]    [Pg.586]    [Pg.136]    [Pg.398]    [Pg.694]    [Pg.712]    [Pg.1072]    [Pg.176]    [Pg.268]    [Pg.337]    [Pg.495]    [Pg.135]    [Pg.53]    [Pg.201]    [Pg.62]    [Pg.119]   
See also in sourсe #XX -- [ Pg.7 , Pg.42 ]




SEARCH



© 2024 chempedia.info