Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Beam CVD

In Volume 21, Part A, the preparation of a-Si H by rf and dc glow discharges, sputtering, ion-cluster beam, CVD, and homo-CVD techniques is discussed along with the characteristics of the silane plasma and the resultant atomic and electronic structure and characteristics. [Pg.314]

In practical applications, gas-surface etching reactions are carried out in plasma reactors over the approximate pressure range 10 -1 Torr, and deposition reactions are carried out by molecular beam epitaxy (MBE) in ultrahigh vacuum (UHV below 10 Torr) or by chemical vapour deposition (CVD) in the approximate range 10 -10 Torr. These applied processes can be quite complex, and key individual reaction rate constants are needed as input for modelling and simulation studies—and ultimately for optimization—of the overall processes. [Pg.2926]

It is difficult to observe tliese surface processes directly in CVD and MOCVD apparatus because tliey operate at pressures incompatible witli most teclmiques for surface analysis. Consequently, most fundamental studies have selected one or more of tliese steps for examination by molecular beam scattering, or in simplified model reactors from which samples can be transferred into UHV surface spectrometers witliout air exposure. Reference [4] describes many such studies. Additional tliemes and examples, illustrating botli progress achieved and remaining questions, are presented in section C2.18.4. [Pg.2929]

Silicon Epitaxy. A critical step ia IC fabricatioa is the epitaxial depositioa of sdicoa oa an iategrated circuit. Epitaxy is defined as a process whereby a thin crystalline film is grown on a crystalline substrate. Silicon epitaxy is used ia bipolar ICs to create a high resistivity layer oa a low resistivity substrate. Most epitaxial depositioas are doae either by chemical vapor depositioa (CVD) or by molecular beam epitaxy (MBE) (see Thin films). CVD is the mainstream process. [Pg.346]

Molecular beam epitaxy is a non-CVD epitaxial process that deposits silicon through evaporation. MBE is becoming more common as commercial equipment becomes available. In essence, silicon is heated to moderate temperature by an electron beam in a high vacuum... [Pg.346]

CVD processing can be used to provide selective deposition on certain areas of a surface. Selective tungsten CVD is used to fill vias or holes selectively through siUcon oxide layers in siUcon-device technology. In this case, the siUcon from the substrate catalyzes the reduction of tungsten hexafluoride, whereas the siUcon oxide does not. Selective CVD deposition can also be accompHshed using lasers or focused electron beams for local heating. [Pg.524]

Alternative Thin-Film Fabrication Approaches. Thin films of electronic ceramic materials have also been prepared by sputtering, electron beam evaporation, laser ablation, chemical beam deposition, and chemical vapor deposition (CVD). In the sputtering process, targets may be metal... [Pg.346]

As noted above, amorphous earbon films ean be produeed from earbon-eontaining gas phases (physieal vapour deposition, PVD). They ean also be produced from hydroearbon-eontaining gases (ehemical vapour deposition, CVD). Both PVD and CVD proeesses ean be thermally-aetivated or ean be plasma- and/or eleetrie field-assisted proeesses (e.g., mierowave assisted CVD and ion beam deposition). As a eonsequence a wide range of processes have been developed to form amorphous carbon films and a correspondingly complex nomenclature has evolved [70, 71]. [Pg.14]

Chemical vapor deposition may be defined as the deposition of a solid on a heated surface from a chemical reaction in the vapor phase. It belongs to the class of vapor-transfer processes which is atomistic in nature, that is the deposition species are atoms or molecules or a combination ofthese. Beside CVD, they include various physical-vapor-deposition processes (PVD) such as evaporation, sputtering, molecular-beam epitaxy, and ion plating. [Pg.26]

Potential CVD applications are beam splitter and interference layer in optical devices and detector for ethyl alcohol. [Pg.314]

Silicon is not as prominent a material in optoelectronics as it is in purely electronic applications, since its optical properties are limited. Yet it finds use as a photodetector with a response time in the nanosecond range and a spectral response band from 0.4 to 1.1 im, which matches the 0.905 im photoemission line of gallium arsenide. Silicon is transparent beyond 1.1 im and experiments have shown that a red light can be produced by shining an unfocused green laser beam on a specially prepared ultrathin crystal-silicon slice.CVD may prove useful in preparing such a material. [Pg.386]

These materials are produced in monolithic form or as coatings. The coatings are generally applied by CVD on ceramic substrates and by sputtering, electron-beam evaporation, or ion-beam assisted deposition on steel substrates (see Appendix). [Pg.435]

A new process based on laser CVD does not require a core material and is able to produce fibers with a much smaller diameter. Deposition rate is up to 1 mm/sec. The process is still experimental and is presently being developed for the production of boron, SiC, and Si3N4.1 1 The core-less deposition may be accomplished by impinging the laser beam on the growing end of a retreating fiber in a CVD atmosphere. [Pg.468]

DEC coating was first prepared by Aisenberg and Chabot using ion beam deposition in 1971 [2]. At present, PVD, such as ion beam deposition, sputtering deposition, cathodic vacuum arc deposition, pulsed laser deposition, and CVD, like plasma enhanced chemical vapor deposition are the most popular methods to be selected to fabricate DEC coatings. [Pg.147]

Up to the present, a number of conventional film preparation methods like PVD, CVD, electro-chemical deposition, etc., have been reported to be used in synthesis of CNx films. Muhl et al. [57] reviewed the works performed worldwide, before the year 1998, on the methods and results of preparing carbon nitride hlms. They divided the preparation techniques into several sections including atmospheric-pressure chemical processes, ion-beam deposition, laser techniques, chemical vapor deposition, and reactive sputtering [57]. The methods used in succeeding research work basically did not... [Pg.152]

VHF (50-100 MHz) up to the gigahertz range], the use of remote excitation of the plasma, plasma beams, and modulation of the plasma in time or frequency. Even methods without the assistance of a plasma have evolved, such as the hotwire CVD (HWCVD) method. [Pg.2]

The deposition of a wide range of materials using beams of elemental sources in high-vacuum apparatus (10-4—10-8 torr), essentially by physical methods, is known as molecular beam epitaxy (MBE)8 12 and atomic layer epitaxy (ALE). These methods will be mentioned where there is an overlap with CVD techniques, but will not be fully reviewed. (They are mentioned also in Chapter 9.15). [Pg.1012]

In the case of H in low-temperature deposited silicon nitride films, ion beam techniques have again been used to calibrate IR absorption. The IR absorption cross sections most often quoted in the literature for Si—H and N—H bonds in plasma-deposited material are those of Lanford and Rand (1978) who used 15N nuclear reaction to calibrate their IR spectrometry. Later measurements in CVD nitride films, using similar techniques, confirmed these cross sections (Peercy et al., 1979). [Pg.212]

CVD processes, 24 746 CVS system flow, 10 33, 35 CW laser beam, 14 673, 674 Cyagard RF1204, 11 496 Cyan, CIE chromaticity diagram, 7 313, 315. See also Cyan dyes... [Pg.239]

The hybridizing component can also be formed directly on the surface of a pristine or modified nanocarbon using molecular precursors, such as organic monomers, metal salts or metal organic complexes. Depending on the desired compound, in situ deposition can be carried out either in solution, such as via direct network formation via in situ polymerization, chemical reduction, electro- or electroless deposition, and sol-gel processes, or from the gas phase using chemical deposition (i.e. CVD or ALD) or physical deposition (i.e. laser ablation, electron beam deposition, thermal evaporation, or sputtering). [Pg.134]

Two popular means of growing silicon single crystals are molecular beam epitaxy (MBE) and chemical vapor deposition (CVD) se a beam... [Pg.317]


See other pages where Beam CVD is mentioned: [Pg.166]    [Pg.166]    [Pg.167]    [Pg.167]    [Pg.166]    [Pg.166]    [Pg.167]    [Pg.167]    [Pg.301]    [Pg.206]    [Pg.368]    [Pg.383]    [Pg.536]    [Pg.147]    [Pg.126]    [Pg.403]    [Pg.455]    [Pg.480]    [Pg.157]    [Pg.27]    [Pg.188]    [Pg.189]    [Pg.375]    [Pg.298]    [Pg.429]    [Pg.232]    [Pg.367]    [Pg.149]    [Pg.75]    [Pg.531]   


SEARCH



CVD

© 2024 chempedia.info