Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Batteries Li-ion battery

It is clear that there is enormous activity in the the search for better and cheaper anode materials for Li-ion batteries. In fact, it is not certain at this time whether carbon will remain the material of choice for this application. Nevertheless, large strides toward the optimization and understanding of carbons for Li-ion batteries have been made in the last 5 to 10 years. If continued progress is made, we can expect to see carbon materials in Li-ion batteries for a long timx to come. [Pg.385]

Chapter 11 reports the use of carbon materials in the fast growing consumer eleetronies applieation of lithium-ion batteries. The principles of operation of a lithium-ion battery and the mechanism of Li insertion are reviewed. The influence of the structure of carbon materials on anode performance is described. An extensive study of the behavior of various carbons as anodes in Li-ion batteries is reported. Carbons used in commereial Li-ion batteries are briefly reviewed. [Pg.557]

A great variety of polyolefin separator types are now used in Li ion batteries. They must be stable in the organic electrolytes. Typically they may not be properly wetted by the electrolytes of the optimized composition, e. g., mixtures with PC, PE, and others. Therefore some proprietary treatments are needed to provide hydrophilic behavior. Generally, a micro-porous nonwoven morphology with a large surface gives a good wettability. [Pg.72]

A-T Battery Co. is a joint venture between Asahi and Toshiba, to produce Li ion batteries. Fuji Electric and Fuji Film, Hitachi-Maxell (Li-thionyl cells, and now also Li ion cells), Japan Storage Battery Co. (prismatic cells), and Matsushita Battery Co. cover most systems. Mitsubishi Electric, Mitsui, and Sanyo are major producers of the Li - Mn02 system. Sony Energy... [Pg.72]

Tec. produces Li ion batteries. Yuasa works with Hydro-Quebec on polymer systems. [Pg.72]

Li ion batteries are heavily advertised as the future power sources for electric vehicles. This seems premature because the technology of heat management and many questions of safety are not solved. Fuel cells and several types of secondary batteries have a long history in the field of electric vehicle propulsion, with successes and failures. For information on electric vehicle batteries, see [16-22],... [Pg.73]

Beginning in the early 1980s [20, 21] metallic lithium was replaced by lithium insertion materials having a lower standard redox potential than the positive insertion electrode this resulted in a "Li-ion" or "rocking-chair" cell with both negative and positive electrodes capable of reversible lithium insertion (see recommended papers and review papers [7, 10, 22-28]). Various insertion materials have been proposed for the anode of rechargeable lithium batteries,... [Pg.384]

The preparation and properties of a novel, commercially viable Li-ion battery based on a gel electrolyte has recently been disclosed by Bellcore (USA) [124]. The technology has, to date, been licensed to six companies and full commercial production is imminent. The polymer membrane is a copolymer based on PVdF copolymerized with hexafluoropropylene (HFP). HFP helps to decrease the crystallinity of the PVdF component, enhancing its ability to absorb liquid. Optimizing the liquid absorption ability, mechanical strength, and processability requires optimized amorphous/crystalline-phase distribution. The PVdF-HFP membrane can absorb plasticizer up to 200 percent of its original volume, especially when a pore former (fumed silica) is added. The liquid electrolyte is typically a solution of LiPF6 in 2 1 ethylene carbonate dimethyl car-... [Pg.517]

Once in an operational battery, the separator should be physically and chemically stable to the electrochemical environment inside the cell. The separator should prevent migration of particles between electrodes, so the effective pore size should be less than 1pm. Typically, a Li-ion battery might be used at a C rate, which corresponds to 1-3 mAcm2, depending on electrode area the electrical resistivity of the separator should not limit battery performance under any conditions. [Pg.554]

The thermodynamic properties of magnesium make it a natural choice for use as an anode material in rechargeable batteries, as it may provide a considerably higher energy density than the commonly used lead-acid and nickel-cadmium systems, while in contrast to Pb and Cd, magnesium is inexpensive, environmentally friendly, and safe to handle. However, the development of Mg-ion batteries has so far been limited by the kinetics of Mg " " diffusion and the lack of suitable electrolytes. Actually, in spite of an expected general similarity between the processes of Li and Mg ion insertion into inorganic host materials, most of the compounds that exhibit fast and reversible Li ion insertion perform very poorly in Mg " ions. Hence, there... [Pg.329]

Zhu et al. [94] reported the synthesis of Sn02 semiconductor nanoparticles by ultrasonic irradiation of an aqueous solution of SnCLj and azodicarbonamide under ambient air. They found that the sonochemically synthesized Sn02 nanoparticles improved remarkably the performance of Li ion batteries such that there was about threefold increase (from 300 to 800 mAh/g) in the reversible capacity in the first lithiation to delithiation cycles. Similarly the irreversible capacity also increased by about 70% (from 800 to 1400 mA h/g). Wang et al. [95] reported the synthesis of positively charged tin porphyrin adsorbed onto the surface of silica and used as photochemically active templates to synthesise platinum and palladium shell and... [Pg.236]

Practically every battery system uses carbon in one form or another. The purity, morphology and physical form are very important factors in its effective use in all these applications. Its use in lithium-ion batteries (Li-Ion), fuel cells and other battery systems has been reviewed previously [1 -8]. Two recent applications in alkaline cells and Li-Ion cells will be discussed in more detail. Table 1 contains a partial listing of the use of carbon materials in batteries that stretch across a wide spectrum of battery technologies and materials. Materials stretch from bituminous materials used to seal carbon-zinc and lead acid batteries to synthetic graphites used as active materials in lithium ion cells. [Pg.176]

The Li-Ion system was developed to eliminate problems of lithium metal deposition. On charge, lithium metal electrodes deposit moss-like or dendrite-like metallic lithium on the surface of the metal anode. Once such metallic lithium is deposited, the battery is vulnerable to internal shorting, which may cause dangerous thermal run away. The use of carbonaceous material as the anode active material can completely prevent such dangerous phenomenon. Carbon materials can intercalate lithium into their structure (up to LiCe). The intercalation reaction is very reversible and the intercalated carbons have a potential about 50mV from the lithium metal potential. As a result, no lithium metal is found in the Li-Ion cell. The electrochemical reactions at the surface insert the lithium atoms formed at the electrode surface directly into the carbon anode matrix (Li insertion). There is no lithium metal, only lithium ions in the cell (this is the reason why Li-Ion batteries are named). Therefore, carbonaceous material is the key material for Li-Ion batteries. Carbonaceous anode materials are the key to their ever-increasing capacity. No other proposed anode material has proven to perform as well. The carbon materials have demonstrated lower initial irreversible capacities, higher cycle-ability and faster mobility of Li in the solid phase. [Pg.179]

The future remains bright for the use of carbon materials in batteries. In the past several years, several new carbon materials have appeared mesophase pitch fibers, expanded graphite and carbon nanotubes. New electrolyte additives for Li-Ion permit the use of low cost PC based electrolytes with natural graphite anodes. Carbon nanotubes are attractive new materials and it appears that they will be available in quantity in the near future. They have a high ratio of the base plane to edge plain found in HOPG. The ultracapacitor application to deposit an electronically conductive polymer on the surface of a carbon nanotube may be the wave of the future. [Pg.187]

Lithium-ion (shuttle-cock, rocking-chair, swing) battery is widely considered as the most advanced power source for consumer electronics and is regarded as the most promising battery technology for a variety of other applications, such as electric vehicles, medicine and space exploration. One of the most critical factors in designing successful Li-ion cell is the choice of... [Pg.207]


See other pages where Batteries Li-ion battery is mentioned: [Pg.296]    [Pg.415]    [Pg.2628]    [Pg.192]    [Pg.157]    [Pg.163]    [Pg.164]    [Pg.22]    [Pg.160]    [Pg.384]    [Pg.451]    [Pg.215]    [Pg.41]    [Pg.70]    [Pg.72]    [Pg.72]    [Pg.82]    [Pg.114]    [Pg.242]    [Pg.243]    [Pg.517]    [Pg.538]    [Pg.613]    [Pg.615]    [Pg.616]    [Pg.618]    [Pg.640]    [Pg.111]    [Pg.325]    [Pg.326]    [Pg.332]    [Pg.468]    [Pg.110]    [Pg.202]    [Pg.369]    [Pg.178]    [Pg.183]    [Pg.186]    [Pg.187]    [Pg.208]   
See also in sourсe #XX -- [ Pg.210 ]

See also in sourсe #XX -- [ Pg.344 , Pg.345 ]




SEARCH



Anode Materials for Li-Ion Batteries

Anodes for Li-Ion Batteries

Cathode Active Material for Li-Ion Battery (LIB)

Cathode materials, for Li-ion batteries

Competitors Among Li Ion Battery Manufacturers

Graphene-Based Materials Used as Electrodes in Ni-MH and Li-Ion Batteries

In Li-ion batteries

Interphases Between Electrolytes and Anodes in Li-Ion Battery

Li-Ion Batteries Involving Ionic Liquids

Li-Ion Battery Pack Configuration

Li-Ion Battery Performance

Li-Ion Battery Technology Past and Present

Li-Ion batteries

Li-Ion batteries

Li-ion batteries material

Li-ion battery configuration

Li-ion battery separator

Li-ion polymer batteries

Li-ion rechargeable batteries

Li-ion secondary batteries

Nanometer Anode Materials for Li-Ion Batteries

On the Surface Chemistry of Cathode Materials in Li-Ion Batteries

Safety Aspects of Li-Ion Batteries

Small Li-Ion Rechargeable Batteries

Surface Treated Natural Graphite as Anode Material for High-Power Li-Ion Battery Applications

Technology of the Li-Ion Batteries

The Li-Ion Battery

Transport in Li-ion batteries

© 2024 chempedia.info