Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Basic plasma mass spectrometry

The analysis of rock samples was conducted in the chemical laboratory in Ust-Kamenogorsk, Kazakhstan. by inductively coupled plasma mass spectrometry, and the equipment used was an ELAN-6100 (US) mass spectrometer. In the present abstract the distribution of two elements zinc (as the basic ore-forming element) and titanium (of the siderophile element) is examined. The sensitivity of the analysis is 5 ppm for Zn and 0.05% for Ti. The analytical results for Zn and Ti are presented on contoured... [Pg.162]

Fundamentals and Basic Instrumentation of Inductively Coupled Plasma Mass Spectrometry... [Pg.21]

The most widely used spectrochemical methods are flame atomic absorption spectrometry (FAAS), electrothermal atomization atomic absorption spectrometry (ETA-AAS), and inductively coupled plasma atomic emission spectrometry (ICP-AES). Some work has been performed using inductively coupled plasma mass spectrometry (ICP-MS) and the unique properties of Hg have allowed the use of cold vapor (CV) A AS. It is beyond the scope of this chapter to describe these well-established and well-accepted spectrochemical techniques. The reader is referred to several excellent texts which describe in detail the basic principles, instrumentation, and method development of these analytical techniques [1-4]. The most toxic elements, such as As, Cd, Cr, Pb, and particularly Hg have been the most widely studied. Other metals, such as Ba, Cu, Fe, Mn, V, and Zn, have also been investigated. [Pg.439]

Flame atomic absorption was until recently the most widely used techniques for trace metal analysis, reflecting its ease of use and relative freedom from interferences. Although now superceded in many laboratories by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry, flame atomic absorption spectrometry still is a very valid option for many applications. The sample, usually in solution, is sprayed into the flame following the generation of an aerosol by means of a nebulizer. The theory of atomic absorption spectrometry (AAS) and details of the basic instrumentation required are described in a previous article. This article briefly reviews the nature of the flames employed in AAS, the specific requirements of the instrumentation for use with flame AAS, and the atomization processes that take place within the flame. An overview is given of possible interferences and various modifications that may provide some practical advantage over conventional flame cells. Finally, a number of application notes for common matrices are given. [Pg.173]

The corabination of an inductively coupled plasma ion source and a magnetic sector-based mass spectrometer equipped with a multi-collector (MC) array [multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS)] offers precise and reliable isotope ratio data for many solid elements. In fact, MC-ICP-MS provides data, the trueness (accuracy) and precision of which is similar to, or, in some cases, even superior to, that achieved by thermal ionization mass spectrometry (TIMS), considered the benchmark technique for isotope ratio measurements of most solid elements [1], The basic strength of ICP-MS lies in the ion source, which achieves extremely high ionization efficiency for almost all elements [2, 3]. Consequently, MC-ICP-MS is likely to become the method of choice for many geochemists, because it is a versatile, user-friendly, and efficient method for the isotopic analysis of trace elements [4-8], The ICP ion source also accepts dry sample aerosols generated by laser ablation [9-16], The combination of laser ablation (LA) with ICP-MS is now widely accepted as a sensitive analytical tool for the elemental and isotopic analysis of solid samples. [Pg.93]

Coedo, A. G., and Dorado,T. (1995). Evaluation of the analytical performance of inductively coupled plasma mass spectrometry for the simultaneous determination of major and minor elements in basic slags. Mikrochim.Acta 118(1-2), 75. [Pg.202]

The nebulization concept has been known for many years and is commonly used in hair and paint spays and similar devices. Greater control is needed to introduce a sample to an ICP instrument. For example, if the highest sensitivities of detection are to be maintained, most of the sample solution should enter the flame and not be lost beforehand. The range of droplet sizes should be as small as possible, preferably on the order of a few micrometers in diameter. Large droplets contain a lot of solvent that, if evaporated inside the plasma itself, leads to instability in the flame, with concomitant variations in instrument sensitivity. Sometimes the flame can even be snuffed out by the amount of solvent present because of interference with the basic mechanism of flame propagation. For these reasons, nebulizers for use in ICP mass spectrometry usually combine a means of desolvating the initial spray of droplets so that they shrink to a smaller, more uniform size or sometimes even into small particles of solid matter (particulates). [Pg.106]

This is the basic process in an inductively coupled plasma discharge (ICP). The excited ions can be examined by observing the emitted light or by mass spectrometry. Since the molecules have been broken down into their constituent atoms (as ions) including isotopes, these can be identified and quantified by mass spectrometry, as happens with isotope ratio measurements. [Pg.388]

Secondary Ion Mass Spectrometry Basic Concepts, Instrumental Aspects, Applications and Trends. By A. Benninghoven, F. G. Ruenauer, and H.W.Werner Analytical Applications of Lasers. Edited by Edward H. Piepmeier Applied Geochemical Analysis. By C. O. Ingamells and F. F. Pitard Detectors for Liquid Chromatography. Edited by Edward S.Yeung Inductively Coupled Plasma Emission Spectroscopy Part 1 Methodology, Instrumentation, and Performance Part II Applications and Fundamentals. Edited by J. M. Boumans... [Pg.653]

An introductory manual that explains the basic concepts of chemistry behind scientific analytical techniques and that reviews their application to archaeology. It explains key terminology, outlines the procedures to be followed in order to produce good data, and describes the function of the basic instrumentation required to carry out those procedures. The manual contains chapters on the basic chemistry and physics necessary to understand the techniques used in analytical chemistry, with more detailed chapters on atomic absorption, inductively coupled plasma emission spectroscopy, neutron activation analysis, X-ray fluorescence, electron microscopy, infrared and Raman spectroscopy, and mass spectrometry. Each chapter describes the operation of the instruments, some hints on the practicalities, and a review of the application of the technique to archaeology, including some case studies. With guides to further reading on the topic, it is an essential tool for practitioners, researchers, and advanced students alike. [Pg.407]

Inductively Coupled and Microwave Induced Plasma Sources for Mass Spectrometry 4 Industrial Analysis with Vibrational Spectroscopy 5 Ionization Methods in Organic Mass Spectrometry 6 Quantitative Millimetre Wavelength Spectrometry 7 Glow Discharge Optical Emission Spectroscopy A Practical Guide 8 Chemometrics in Analytical Spectroscopy, 2nd Edition 9 Raman Spectroscopy in Archaeology and Art History 10 Basic Chemometric Techniques in Atomic Spectroscopy... [Pg.321]

Mallet, C. R., Mazzeo, J. R., and Neue, U. (2001). Evaluation of several solid phase extraction liquid chromatography/tandem mass spectrometry on-line configurations for high-throughput analysis of acidic and basic drugs in rat plasma. Rapid Commun. Mass Spectrom. 15 1075-1083. [Pg.338]

A selective, sensitive, and rapid hydrophilic interaction liquid chromatography with electrospray ionization tandem mass spectrometry was developed for the determination of donepezil in human plasma [32], Donepezil was twice extracted from human plasma using methyl-ferf-butyl ether at basic pH. The analytes were separated on an Atlantis HILIC Silica column with the mobile phase of acetonitrile ammonium formate (50 mM, pH 4.0) (85 15, v/v) and detected by tandem mass spectrometry in the selective reaction monitoring mode. The calibration curve was linear (r = 0.9994) over the concentration range of 0.10-50.0 ng/ ml and the lower limit of quantification was 0.1 ng/ml using 200 /d plasma sample. The CV and relative error for intra- and inter-assay at four quality control levels were 2.7% to 10.5% and —10.0% to 0.0%, respectively. There was no matrix effect for donepezil and cisapride. The present method was successfully applied to the pharmacokinetic study of donepezil after oral dose of donepezil hydrochloride (10 mg tablet) to male healthy volunteers. [Pg.141]

Whereas in LIMS only one laser with defined wavelength (e.g., Nd YAG - 1064 nm) is used for direct vaporization and ionization of solid samples in laser plasma, in resonance ionization mass spectrometry (RIMS) " one or more lasers are tuned precisely to the wavelength required for the excited states and ionization of evaporated atoms in order to get a highly selective ionization of the analyte. The basic principles of resonant ionization were first described by Hurst and coworkers at Oak Ridge National Laboratory as well as by Letokhov et in Russia. The technology... [Pg.50]


See other pages where Basic plasma mass spectrometry is mentioned: [Pg.195]    [Pg.66]    [Pg.71]    [Pg.373]    [Pg.711]    [Pg.371]    [Pg.457]    [Pg.1597]    [Pg.137]    [Pg.20]    [Pg.354]    [Pg.4]    [Pg.436]    [Pg.151]    [Pg.295]    [Pg.367]    [Pg.351]    [Pg.426]    [Pg.652]    [Pg.255]    [Pg.50]    [Pg.517]    [Pg.225]    [Pg.153]    [Pg.395]    [Pg.308]    [Pg.347]    [Pg.517]    [Pg.537]    [Pg.435]   
See also in sourсe #XX -- [ Pg.704 ]




SEARCH



Mass Spectrometry Basics

Mass plasma

Plasma mass spectrometry

Plasma spectrometry)

© 2024 chempedia.info