Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

AOT reverse micelles

Hasegawa M, Sugimura T, Shindo Y and Kitahara A 1996 Structure and properties of AOT reversed micelles as studied by the fluorescence probe technique Colloids Surf. A 109 305-18... [Pg.2605]

The conformation of bovine myelin basic protein (MBP) in AOT/isooctane/water reversed micellar systems was studied by Waks et al. 67). This MBP is an extrinsic water soluble protein which attains an extended conformation in aqueous solution 68 but is more density packed at the membrane surface. The solubilization of MBP in the AOT reversed micelles depends on the water/AOT-ratio w0 68). The maximum of solubilization was observed at a w0-value as low as 5.56. The same value was obtained for another major protein component of myelin, the Folch-Pi proteolipid 69). According to fluorescence emission spectra of MBP, accessibility of the single tryptophane residue seems to be decreased in AOT reversed micelles. From CD-spectra one can conclude that there is a higher conformational rigidity in reversed micelles and a more ordered aqueous environment. [Pg.10]

In certain cases, solubihzahon is driven by specific interachons. For example, the formation of a strong bromine-AOT charge-hansfer complex has been considered responsible for the solubihzation and locahon of bromine in AOT-reversed micelles [26],... [Pg.476]

At infinite dilution, 1-pentanol monomers distribute between AOT-reversed micelles and the continuous organic phase, whereas at finite alcohol concentration, given the ability of alcohol to self-assemble in the apolar organic solvent, a coexistence between reversed micelles (solubilizing 1-pentanol) and alcoholic aggregates (incorporating AOT molecules) is realized [25],... [Pg.476]

Dynamic light-scattering experiments or the analysis of some physicochemical properties have shown that finite amounts of formamide, A-methylformamide, AA-dimethyl-formamide, ethylene glycol, glycerol, acetonitrile, methanol, and 1,2 propanediol can be entrapped within the micellar core of AOT-reversed micelles [33-36], The encapsulation of formamide and A-methylformamide nanoclusters in AOT-reversed micelles involves a significant breakage of the H-bond network characterizing their structure in the pure state. Moreover, from solvation dynamics measurements it was deduced that the intramicellar formamide is nearly completely immobilized [34,35],... [Pg.476]

Other applications are based on the use of solutions of reversed micelles as templates. For example, solutions of reversed micelles have been employed as a matrix to control the porosity of cross-linked polymer resins. The pore size of the polymers was controlled by varying the amounts of water in the AOT-reversed micelles [67]. [Pg.479]

In the case of water-containing AOT-reversed micelles, less than 1 in 1000 intermi-cellar coUisions leads to micelle coalescence followed by separation and a material exchange process occurring in the microsecond to millisecond time scale [3,79]. [Pg.479]

Experimentally, it has been found that for water-containing AOT-reversed micelles, Vs, Vw, and change with R, becoming nearly constant above / = 10 [86,87], It follows that only above / = 10 it can a linear relationship between r and R be expected [88],... [Pg.481]

The apparent molar volume of interfacial water in AOT-reversed micelles is lower and its refractive index is greater than that of pure water. These findings, together with other experimental evidence, emphasize that these water molecnles are destructured, immobilized, and polarized by the ionic head of AOT [2,84,89]. In particular, it has been reported that the... [Pg.481]

FIG. 4 Onion model of spherical water-containing reversed micelles. Solvent molecules are not represented. A, surfactant alkyl chain domain B, head group plus hydration water domain C, hulk water domain. (For water-containing AOT-reversed micelles, the approximate thickness of layer A is 1.5 nm, of layer B is 0.4 nm, whereas the radius of C is given hy the equation r = 0.17R nm.)... [Pg.481]

The small and positive values of enthalpy of solution of water in AOT-reversed micelles indicate that its energetic state is only slightly changed and that water solubilization (unfavorable from an enthalpic point of view) is driven mainly by a favorable change in entropy (the destructuration of the water at the interface and its dispersion as nanodroplets could be prominent contributions) [87],... [Pg.482]

In contrast, thermodynamic as well as spectroscopic properties of core water in AOT-reversed micelles are similar to those of pure water. Together with electrostatic considerations, this suggests that the penetration of counterions in the micellar core is negligible and that a relatively small number of water molecules are able to reconstruct the typical extended H-bonded structure of bulk water. [Pg.482]

Differential scanning calorimetry measurements have shown a marked cooling/heat-ing cycle hysteresis and that water entrapped in AOT-reversed micelles is only partially freezable. Moreover, the freezable fraction displays strong supercooling behavior as an effect of the very small size of the aqueous micellar core. The nonfreezable water fraction has been recognized as the water located at the water/surfactant interface engaged in solvation of the surfactant head groups [97,98]. [Pg.482]

Electrolytes are obviously solubilized only in the aqueous micellar core. Adding electrolytes in water-containing AOT-reversed micelles has an effect that is opposite to that observed for direct micelles, i.e., a decrease in the micellar radius and in the intermicellar attractive interactions is observed. This has been attributed to the stabilization of AOT ions at the water/surfactant interface [128]. [Pg.485]

Effects on the micellar shape are also induced by electrolyte addition. It has been observed that, in decane, the water-containing AOT-reversed micelles become more spherical upon addition of salt (NaCl, CaCli) [6]. [Pg.485]

The addition of salts modifies the composition of the layer of charges at the micellar interface of ionic surfactants, reducing the static dielectric constant of the system [129,130]. Moreover, addition of an electrolyte (NaCl or CaCli) to water-containing AOT-reversed micelles leads to a marked decrease in the maximal solubihty of water, in the viscosity, and in the electrical birefringence relaxation time [131],... [Pg.485]

Sometimes, the physicochemical properties of ionic species solubilized in the aqueous core of reversed micelles are different from those in bulk water. Changes in the electronic absorption spectra of ionic species (1 , Co ", Cu " ) entrapped in AOT-reversed micelles have been observed, attributed to changes in the amount of water available for solvation [2,92,134], In particular, it has been observed that at low water concentrations cobalt ions are solubihzed in the micellar core as a tetrahedral complex, whereas with increasing water concentration there is a gradual conversion to an octahedral complex [135],... [Pg.485]

In the case of Kryptofix 221D, a cryptand able to complex the alkali metal cations [141-143], it has been observed that it is solubilized mainly in the palisade layer of the AOT-reversed micelles. And from an analysis of the enthalpy of transfer of this solubilizate from the organic to the micellar phase it has been established that the driving force of the solubilization is the complexation of the sodium counterion. In addition, the enthalpy... [Pg.486]

The microenvironment in water-containing AOT-reversed micelles has a marked effect on the spectral properties of flnorescein. The absorption peaks are red-shifted by about 10 nm from the corresponding positions in aqueous solution, the absorption extinction coefficient increases with R, and the fluorescence is more effectively quenched in AOT-reversed micelles than in aqueous solution [149],... [Pg.487]

By flourescence techniques, it was observed that the fluorescence yield and lifetime of 1,8-anilinonaphthalenesulfonate decrease with an increase in the aqueous core of AOT-reversed micelles, while the position of the emission maximum shifts to longer wavelengths [64], These changes in the electronic properties were attributed to the peculiar effective polarity and viscosity of the micellar core and to their evolution with R. [Pg.487]

It has been reported that while in aqueous solution the lifetime of optically excited nile red is 0,65 ns inside AOT-reversed micelles it is 3,73 ns, becoming 2,06 ns at/ = 30 [150],... [Pg.487]

The fluorescence lifetime of trans-4-[4-(dimethylamino-styryl]-l-methylpyridinium iodide trapped in water-containing AOT-reversed micelles has been found to be markedly influenced by R, implying a significant effect on its excited-state twisting motion [122],... [Pg.487]

The solubilization of amino acids in AOT-reversed micelles has been widely investigated showing the importance of the hydrophobic effect as a driving force in interfacial solubihzation [153-157]. Hydrophilic amino acids are solubilized in the aqueous micellar core through electrostatic interactions. The amino acids with strongly hydrophobic groups are incorporated mainly in the interfacial layer. The partition coefficient for tryptophan and micellar shape are affected by the loading ratio of tryptophan to AOT [158],... [Pg.488]

Some investigations have tested the ability of reversed micelles to act as efficient carriers of molecular species. Solutions of water-containing AOT-reversed micelles have been employed for the selective transport and the efficient separation of the two amino acids tryptophane and j9-iodophenylalanine [160]. [Pg.488]

The transdermal permation of glyceryl trinitrate encapsulated in AOT-reversed micelles was compared with that of an aqueous solution, and an enhancement in permeation was found as well as the absence of skin irritation [161]. [Pg.488]

The entrapment of a-chymotrypsin, lysozyme, and myehn in AOT-reversed micelles is accompanied by an increase in the micellar water content and in the size of the micelle. As a consequence of the redistribution of water among reversed micelles, the micellar solution results in being constituted by large protein-containing micelles and small unfilled ones [169],... [Pg.488]

In the presence of the polyelectrolyte polyallylamine hydrochloride (PAAN), the formation of a pearl-necklace structure between AOT-reversed micelles and PAAN was... [Pg.489]

Solubilization of vinylpyrrolidone, acrylic acid, and A,A -methylene-bis-acrylamide in AOT-reversed micelles allowed the synthesis in situ of a cross-linked polymer with narrow size distribution confined in the micellar domain. These particles displayed high entrapment efficiency of small hydrophilic drugs and have been considered interesting drug delivery systems [239],... [Pg.494]

It follows that in spite of the apolar coat surrounding water-containing AOT-reversed micelles and their dispersion in an apolar medium, some microscopic processes are able to establish intermicellar attractive interactions. These intermicellar interactions between AOT-reversed micelles increase with increasing temperature or the chain length of the hydrocarbon solvent molecule, thus leading to the enhancement of the clustering process [244-246], whereas they are reduced in the presence of inorganic salts [131]. [Pg.494]

In the past few years, a range of solvation dynamics experiments have been demonstrated for reverse micellar systems. Reverse micelles form when a polar solvent is sequestered by surfactant molecules in a continuous nonpolar solvent. The interaction of the surfactant polar headgroups with the polar solvent can result in the formation of a well-defined solvent pool. Many different kinds of surfactants have been used to form reverse micelles. However, the structure and dynamics of reverse micelles created with Aerosol-OT (AOT) have been most frequently studied. AOT reverse micelles are monodisperse, spherical water droplets [32]. The micellar size is directly related to the water volume-to-surfactant surface area ratio defined as the molar ratio of water to AOT,... [Pg.411]

The observation of slow, confined water motion in AOT reverse micelles is also supported by measured dielectric relaxation of the water pool. Using terahertz time-domain spectroscopy, the dielectric properties of water in the reverse micelles have been investigated by Mittleman et al. [36]. They found that both the time scale and amplitude of the relaxation was smaller than those of bulk water. They attributed these results to the reduction of long-range collective motion due to the confinement of the water in the nanometer-sized micelles. These results suggested that free water motion in the reverse micelles are not equivalent to bulk solvation dynamics. [Pg.412]

Investigation of water motion in AOT reverse micelles determining the solvent correlation function, C i), was first reported by Sarkar et al. [29]. They obtained time-resolved fluorescence measurements of C480 in an AOT reverse micellar solution with time resolution of > 50 ps and observed solvent relaxation rates with time constants ranging from 1.7 to 12 ns. They also attributed these dynamical changes to relaxation processes of water molecules in various environments of the water pool. In a similar study investigating the deuterium isotope effect on solvent motion in AOT reverse micelles. Das et al. [37] reported that the solvation dynamics of D2O is 1.5 times slower than H2O motion. [Pg.412]

In addition, water motion has been investigated in reverse micelles formed with the nonionic surfactants Triton X-100 and Brij-30 by Pant and Levinger [41]. As in the AOT reverse micelles, the water motion is substantially reduced in the nonionic reverse micelles as compared to bulk water dynamics with three solvation components observed. These three relaxation times are attributed to bulklike water, bound water, and strongly bound water motion. Interestingly, the overall solvation dynamics of water inside Triton X-100 reverse micelles is slower than the dynamics inside the Brij-30 or AOT reverse micelles, while the water motion inside the Brij-30 reverse micelles is relatively faster than AOT reverse micelles. This work also investigated the solvation dynamics of liquid tri(ethylene glycol) monoethyl ether (TGE) with different concentrations of water. Three relaxation time scales were also observed with subpicosecond, picosecond, and subnanosecond time constants. These time components were attributed to the damped solvent motion, seg-... [Pg.413]

Kitchens, C.L., McLeod, M.C. and Roberts, C.B. (2003) Solvent effects on the growth and steric stabilization of copper metallic nanoparticles in AOT reverse micelle systems. Journal of Physical Chemistry B, 107 (41), 11331-11338. [Pg.57]


See other pages where AOT reverse micelles is mentioned: [Pg.7]    [Pg.74]    [Pg.476]    [Pg.478]    [Pg.486]    [Pg.487]    [Pg.487]    [Pg.490]    [Pg.494]    [Pg.495]    [Pg.496]    [Pg.268]    [Pg.294]    [Pg.411]    [Pg.412]    [Pg.414]    [Pg.416]   
See also in sourсe #XX -- [ Pg.736 ]




SEARCH



AOTS

Micells reverse

Reverse micelle

© 2024 chempedia.info