Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfactant water

Both high bulk and surface shear viscosity delay film thinning and stretching deformations that precede bubble bursting. The development of ordered stmctures in the surface region can also have a stabilizing effect. Liquid crystalline phases in foam films enhance stabiUty (18). In water-surfactant-fatty alcohol systems the alcohol components may serve as a foam stabilizer or a foam breaker depending on concentration (18). [Pg.465]

Liquid Third Phase. A third Hquid with coUoidal stmcture has been a known component in emulsions since the 1970s (22) for nonionic surfactants of the poly(ethylene glycol) alkylaryl ether type. It allows low energy emulsification (23) using the strong temperature dependence of the coUoidal association stmctures in the water—surfactant—hydrocarbon systems. [Pg.201]

When comparable amounts of oil and water are mixed with surfactant a bicontinuous, isotropic phase is formed [6]. This bicontinuous phase, called a microemulsion, can coexist with oil- and water-rich phases [7,1]. The range of order in microemulsions is comparable to the typical length of the structure (domain size). When the strength of the surfactant (a length of the hydrocarbon chain, or a size of the polar head) and/or its concentration are large enough, the microemulsion undergoes a transition to ordered phases. One of them is the lamellar phase with a periodic stack of internal surfaces parallel to each other. In binary water-surfactant mixtures, or in... [Pg.686]

K. Chen, C. Ebner, C. Jayaprakash, R. Pandit. Microemulsions in oil-water-surfactant mixtures Systematics of a lattice-gas model. Phys Rev A 55 6240, 1988. [Pg.740]

G. Gompper, S. Zschocke. Ginzburg-Landau theory of oil-water-surfactant mixtures. Phys Rev A 4d 4836-4851, 1992. [Pg.741]

A. Ciach, J. S. Hoye, G. Stell. Microscopic model for microemulsion. II. Behavior at low temperatures and critical point. J Chem Phys 90 1222-1228, 1989. A. Ciach. Phase diagram and structure of the bicontinuous phase in a three dimensional lattice model for oil-water-surfactant mixtures. J Chem Phys 95 1399-1408, 1992. [Pg.743]

Tests were performed at 75°C using a University of Texas Model 500 spinning drop tensiometer. Active surfactant concentration in the aqueous phase prior to oil addition was 0.50% wt. The Kem River crude oil was from the Patricia Lease. The pH of the deionized water surfactant solutions was 8. The pH of the aqueous NaCl surfactant solutions was 9.5 unless otherwise noted. values represent the average deviation of two or three measurements at different times (0.75-1 h apart). D.I., deionized. [Pg.385]

Surfactants have a unique long-chain molecular structure composed of a hydrophilic head and hydrophobic tail. Based on the nature of the hydrophilic part surfactants are generally categorized as anionic, non-ionic, cationic, and zwitter-ionic. They all have a natural tendency to adsorb at surfaces and interfaces when added in low concentration in water. Surfactant absorption/desorption at the vapor-liquid interface alters the surface tension, which decreases continually with increasing concentrations until the critical micelle concentration (CMC), at which micelles (colloid-sized clusters or aggregates of monomers) start to form is reached (Manglik et al. 2001 Hetsroni et al. 2003c). [Pg.65]

We begin the discussion of EPM by elaborating on this physical picture. Figure 1 shows a typical emulsion CSTR reactor and polymerization recipe. The magnified portion of the latex shows the various phases and the major species involved. The latex consists of monomers, water, surfactant, initiator, chain transfer agent, and added electrolyte. We used the mechanism for particle formation as described in Feeney et al. (8-9) and Hansen and Ugelstad (2). We have not found it necessary to invoke the micellar entry theory 2, 2/ 6./ 11/ 12/ 14. [Pg.361]

Recommended model particle systems are enzymes immobilised on carriers ([27,44,45,47,49]), oil/water/surfactant or solvent/water/surfactant emulsions ([27, 44, 45] or [71, 72]) and a certain clay/polymer floccular system ([27, 42-52]), which have proved suitable in numerous tests. The enzyme resin described in [27,44,47] (acylase immobilised on an ion-exchanger) is used on an industrial scale for the cleavage of Penicillin G and is therefore also a biological material system. In Table 3 are given some data to model particle systems. [Pg.50]

Fig. 18. Comparison of results from various particle systems for stirred vessel with baffles and bubble columns Activity a/ao of Acylase resin after t = 300 h, equilibrium drop diameter dg of silicon oil-water-surfactant emulsion and reference floe diameter dpv of floe system in dependency on specific power P/V H/D = 1 D = 0.15 m 0.4 m... Fig. 18. Comparison of results from various particle systems for stirred vessel with baffles and bubble columns Activity a/ao of Acylase resin after t = 300 h, equilibrium drop diameter dg of silicon oil-water-surfactant emulsion and reference floe diameter dpv of floe system in dependency on specific power P/V H/D = 1 D = 0.15 m 0.4 m...
With the oil/water/surfactant droplet system which was used, no investigations could be performed because of strong foaming. However, studies with water/kerosene emulsions are known from the literature. The results of Yoshida... [Pg.68]

In contrast to this, the enzyme resin is stressed less by gas sparging than by stirring (see Fig. 18 and 20). The same activity losses were observed first with 1 to 8 times greater specific adiabatic compression power Pj/ V than the maximum power density necessary for stirring. As in the case of the smooth disc, the effects of power input are only weak. The type of gas sparger and therefore the gas exit velocity are of no recognisable importance. The behaviour of the enzyme resin particles is thus completely different from that of the clay min-eral/polymer floes and the oil/water/surfactant droplet system, which are particularly intensively stressed by gas sparging. [Pg.70]

Eqnation 4 shows that, at constant , a change of the external parameter/ affects not only the radins but also the concentration of water-containing reversed micelles. It is also of interest that, by increasing R, the fraction of bulklike water molecules located in the core (or the time fraction spent by each water molecule in the core) of spherical reversed micelles increases progressively, whereas the opposite occurs for perturbed water molecules located at the water-surfactant interface, as a consequence of the parallel decrease of the micellar surface-to-volume ratio. [Pg.481]

The water structure at the water/surfactant interface depends on the nature of the surfactant head group, whereas the hydrophobic interface plays only a secondary role [91-93],... [Pg.482]

Indeed, the degree of binding of the counterions to the micellar surface, even in the largest aqueous core, is found to be 12% [2,94]. This means that virtually all counterions are confined in a thin shell near the surface (about 4 A), the concentration of ions in this domain is very high, and a nearly ordered bidimensional spherical lattice of charges is formed at the water/surfactant interface of ionic surfactants. [Pg.482]

Differential scanning calorimetry measurements have shown a marked cooling/heat-ing cycle hysteresis and that water entrapped in AOT-reversed micelles is only partially freezable. Moreover, the freezable fraction displays strong supercooling behavior as an effect of the very small size of the aqueous micellar core. The nonfreezable water fraction has been recognized as the water located at the water/surfactant interface engaged in solvation of the surfactant head groups [97,98]. [Pg.482]

Electrolytes are obviously solubilized only in the aqueous micellar core. Adding electrolytes in water-containing AOT-reversed micelles has an effect that is opposite to that observed for direct micelles, i.e., a decrease in the micellar radius and in the intermicellar attractive interactions is observed. This has been attributed to the stabilization of AOT ions at the water/surfactant interface [128]. [Pg.485]

The different location of polar and amphiphilic molecules within water-containing reversed micelles is depicted in Figure 6. Polar solutes, by increasing the micellar core matter of spherical micelles, induce an increase in the micellar radius, while amphiphilic molecules, being preferentially solubihzed in the water/surfactant interface and consequently increasing the interfacial surface, lead to a decrease in the miceUar radius [49,136,137], These effects can easily be embodied in Eqs. (3) and (4), aUowing a quantitative evaluation of the mean micellar radius and number density of reversed miceUes in the presence of polar and amphiphilic solubilizates. Moreover it must be pointed out that, as a function of the specific distribution law of the solubihzate molecules and on a time scale shorter than that of the material exchange process, the system appears polydisperse and composed of empty and differently occupied reversed miceUes [136],... [Pg.485]

By small-angle neutron scattering experiments on water/AOT/hydrocarbon microemulsions containing various additives, the change of the radius of the miceUar core with the addition of small quantities of additives has been investigated. The results are consistent with a model in which amphiphilic molecules such as benzyl alcohol and octanol are preferentially adsorbed into the water/surfactant interfacial region, decreasing the micellar radius, whereas toluene remains predominantly in the bulk hydrocarbon phase. The effect of n-alcohols on the stability of microemulsions has also been reported [119],... [Pg.485]

Preparation of Mono-Dispersed MFI-type Zeolite Nanoerystals via Hydrothermal Synthesis in a Water/Surfactant/Oil Solution... [Pg.185]

Figure 6.4. Schematic phase diagram for a three-component (oil, water, surfactant) system showing some of the self-assembled structures which form in the various regions. Figure 6.4. Schematic phase diagram for a three-component (oil, water, surfactant) system showing some of the self-assembled structures which form in the various regions.
Different methods are used in microemulsion formation a low-energy emulsification method by dilution of an oil surfactant mixture with water and dilution of a water-surfactant mixture with oil and mixing all the components together in the final composition. These methods involve the spontaneous formation of microemulsions and the order of ingredient addition may determine the formation of the microemulsion. Such applications have been performed with lutein and lutein esters. ... [Pg.315]

There are different ways in which the nanoparticles prepared by ME-technique can be used in catalysis. The use of ME per se [16,17] implies the addition of extra components to the catalytic reaction mixture (hydrocarbon, water, surfactant, excess of a metal reducing agent). This leads to a considerable increase of the reaction volume, and a catal5fiic reaction may be affected by the presence of ME via the medium and solubilization effects. The complex composition of ME does not allow performing solvent-free reactions. [Pg.293]

S. S. Ashrawi. Hot water, surfactant, and polymer flooding process for heavy oil. Patent US 5083612,1992. [Pg.351]

Water-in-oil microemulsions (w/o-MEs), also known as reverse micelles, provide what appears to be a very unique and well-suited medium for solubilizing proteins, amino acids, and other biological molecules in a nonpolar medium. The medium consists of small aqueous-polar nanodroplets dispersed in an apolar bulk phase by surfactants (Fig. 1). Moreover, the droplet size is on the same order of magnitude as the encapsulated enzyme molecules. Typically, the medium is quite dynamic, with droplets spontaneously coalescing, exchanging materials, and reforming on the order of microseconds. Such small droplets yield a large amount of interfacial area. For many surfactants, the size of the dispersed aqueous nanodroplets is directly proportional to the water-surfactant mole ratio, also known as w. Several reviews have been written which provide more detailed discussion of the physical properties of microemulsions [1-3]. [Pg.472]

In mixtures of nonpolar solvents with little water, surfactants form spherical reverse micelles. They have a reversed orientation of the molecules with the hydrophilic groups in the interior and a drop of enclosed water in the middle. Starting from a precursor material, metal oxides in the form of uniform nanosized spheres can be obtained by hydrolysis under controlled conditions (pH, concentration, temperature). For example, titanium oxide spheres are obtained from a titanium alkoxide, Ti(OR)4 + 2 H20 —t Ti02 + 4 ROH. [Pg.245]

The excavated soil is removed from the site and screened to remove large solid objects. The screened soil is washed and the washing water is treated.78 Clearly, the washing media used in in situ soil-flushing treatment can be used here. The most common washing medium is water. Surfactants are used to reduce the affinity of contaminants to the soil. [Pg.740]

Figure 5. Effluent profiles for oil-water-surfactant saturated Wilmington sand... Figure 5. Effluent profiles for oil-water-surfactant saturated Wilmington sand...

See other pages where Surfactant water is mentioned: [Pg.517]    [Pg.2900]    [Pg.312]    [Pg.73]    [Pg.295]    [Pg.172]    [Pg.117]    [Pg.479]    [Pg.480]    [Pg.482]    [Pg.99]    [Pg.252]    [Pg.476]    [Pg.476]    [Pg.41]    [Pg.310]    [Pg.347]   
See also in sourсe #XX -- [ Pg.219 ]




SEARCH



Adhesion force due to water or surfactant

Alkyl polyglycosides surfactant water systems

Binary surfactant-water systems

Electrode water interface surfactants

Interaction Between Food-grade Surfactants and Water

Maximum water—surfactant ratio

Mechanical water interface, surfactant adsorption

Molar ratio of water to surfactant

Nonionic Surfactant and Water Cloud Point

Nonionic Surfactant, Water, and Oil

Oil or Water Droplets Containing an Adsorbed Polymeric Surfactant Steric Stabilisation

Oil-in-Water Emulsion Droplets and Micelles of the Stabilizing Surfactant

Oil/water/surfactant/cosurfactant

Phase Behavior and Interfacial Tension for Oil-Water-Surfactant Systems

Phase Behavior in Surfactant-Oil-Water Systems

Phase diagram, surfactant-water

Polystyrene water interface, surfactant adsorption

Solid surfactant-water systems, alkyl

Spectrophotometric Determination of Anionic Surfactants in Water with On-line Solvent Extraction

Surface Tension in Water. Surfactant Structure

Surface water anionic surfactant concentrations

Surface waters surfactant

Surfactant molecules at air-water

Surfactant, Water, Proton-Donating Material, and Hydrocarbon Quaternary Systems

Surfactant, Water, and Organic Material Ternary Systems

Surfactant-oil-water systems

Surfactant-water system

Surfactant-water system monomeric

Surfactant-water system polymeric

Surfactant-water systems, phase sequence

Surfactant-water-supercritical fluid

Surfactant-water-supercritical fluid systems

Surfactant/oil/water mixtures

Surfactant/water mixtures

Surfactants in the water

Surfactants oil-in-water

Surfactants, carbon black particles water

Surfactants, in waters and wastewater

Surfactants, water-wetting

Ternary surfactant-hydrocarbon-water

The mesophase behaviour of surfactant- and lipid-water mixtures

Water -non-ionic surfactant

Water cetyltrimethylammonium-based surfactant

Water dispersible surfactants

Water hardness, surfactant sensitivity

Water hydrocarbon surfactants

Water nonionic surfactant

Water solubility, surfactant-enhanced remediation

Water solubility, surfactants

Water surface tension, surfactant

Water surface tension, surfactant concentration effect

Water surfactant behavior

Water surfactant molecules

Water surfactants and

Water-cellulose interface, surfactant adsorption

Water-miscible surfactant

Water-oil-surfactant

Water-soluble ionic surfactant

Water-soluble polymeric surfactants

Water-soluble polymers with dilute lamellar surfactants

Water-soluble surfactants

Water-surfactant interactions

Water-to-surfactant ratio

Water/surfactant molar ratio

© 2024 chempedia.info