Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cores micellar

Micellar structure has been a subject of much discussion [104]. Early proposals for spherical [159] and lamellar [160] micelles may both have merit. A schematic of a spherical micelle and a unilamellar vesicle is shown in Fig. Xni-11. In addition to the most common spherical micelles, scattering and microscopy experiments have shown the existence of rodlike [161, 162], disklike [163], threadlike [132] and even quadmple-helix [164] structures. Lattice models (see Fig. XIII-12) by Leermakers and Scheutjens have confirmed and characterized the properties of spherical and membrane like micelles [165]. Similar analyses exist for micelles formed by diblock copolymers in a selective solvent [166]. Other shapes proposed include ellipsoidal [167] and a sphere-to-cylinder transition [168]. Fluorescence depolarization and NMR studies both point to a rather fluid micellar core consistent with the disorder implied by Fig. Xm-12. [Pg.481]

Surfactants have also been of interest for their ability to support reactions in normally inhospitable environments. Reactions such as hydrolysis, aminolysis, solvolysis, and, in inorganic chemistry, of aquation of complex ions, may be retarded, accelerated, or differently sensitive to catalysts relative to the behavior in ordinary solutions (see Refs. 205 and 206 for reviews). The acid-base chemistry in micellar solutions has been investigated by Drummond and co-workers [207]. A useful model has been the pseudophase model [206-209] in which reactants are either in solution or solubilized in micelles and partition between the two as though two distinct phases were involved. In inverse micelles in nonpolar media, water is concentrated in the micellar core and reactions in the micelle may be greatly accelerated [206, 210]. The confining environment of a solubilized reactant may lead to stereochemical consequences as in photodimerization reactions in micelles [211] or vesicles [212] or in the generation of radical pairs [213]. [Pg.484]

The issue of water in reverse micellar cores is important because water swollen reverse micelles (reverse microemulsions) provide means for carrying almost any water-soluble component into a predominantly oil-continuous solution (see discussions of microemulsions and micellar catalysis below). In tire absence of water it appears tliat premicellar aggregates (pairs, trimers etc.) are commonly found in surfactant-in-oil solutions [47]. Critical micelle concentrations do exist (witli some exceptions). [Pg.2591]

The structure of these globular aggregates is characterized by a micellar core formed by the hydrophilic heads of the surfactant molecules and a surrounding hydrophobic layer constituted by their opportunely arranged alkyl chains whereas their dynamics are characterized by conformational motions of heads and alkyl chains, frequent exchange of surfactant monomers between bulk solvent and micelle, and structural collapse of the aggregate leading to its dissolution, and vice versa [2-7]. [Pg.474]

The conformational dynamics of chain segments near the head groups is more restricted than that of those far from the micellar core [8]. Moreover, to avoid the presence of energetically unfavorable void space in the micellar aggregate and as a consequence of the intermolecular interactions, surfactant molecules tend to assume some preferential conformations and a staggered position with respect to the micellar core [9]. A schematic representation of a reversed micelle is shown in Figure 1. [Pg.474]

The main peculiarity of solutions of reversed micelles is their ability to solubilize a wide class of ionic, polar, apolar, and amphiphilic substances. This is because in these systems a multiplicity of domains coexist apolar bulk solvent, the oriented alkyl chains of the surfactant, and the hydrophilic head group region of the reversed micelles. Ionic and polar substances are hosted in the micellar core, apolar substances are solubilized in the bulk apolar solvent, whereas amphiphilic substances are partitioned between the bulk apolar solvent and the domain comprising the alkyl chains and the surfactant polar heads, i.e., the so-called palisade layer [24],... [Pg.475]

Incidentally, it must be pointed out that the contemporaneous or sequential solubihzation of finite amounts of appropriately chosen substances within the micellar core is an unexplored research field that potentially opens the door to the study of highly complex and intriguing phenomena. [Pg.476]

Dynamic light-scattering experiments or the analysis of some physicochemical properties have shown that finite amounts of formamide, A-methylformamide, AA-dimethyl-formamide, ethylene glycol, glycerol, acetonitrile, methanol, and 1,2 propanediol can be entrapped within the micellar core of AOT-reversed micelles [33-36], The encapsulation of formamide and A-methylformamide nanoclusters in AOT-reversed micelles involves a significant breakage of the H-bond network characterizing their structure in the pure state. Moreover, from solvation dynamics measurements it was deduced that the intramicellar formamide is nearly completely immobilized [34,35],... [Pg.476]

Obviously, water, aqueous solutions of salts, and mixtures of highly hydrophilic solvents have also been found to be solubilized in the micellar core [13,44]. The maximum amount of such solubilizates that can be dissolved in reversed micelles varies widely, strongly depending on the nature of the surfactant and the apolar solvent, on the concentrations of surfactant and of additives, and on temperature [24,45-47]. [Pg.478]

In contrast, thermodynamic as well as spectroscopic properties of core water in AOT-reversed micelles are similar to those of pure water. Together with electrostatic considerations, this suggests that the penetration of counterions in the micellar core is negligible and that a relatively small number of water molecules are able to reconstruct the typical extended H-bonded structure of bulk water. [Pg.482]

Differential scanning calorimetry measurements have shown a marked cooling/heat-ing cycle hysteresis and that water entrapped in AOT-reversed micelles is only partially freezable. Moreover, the freezable fraction displays strong supercooling behavior as an effect of the very small size of the aqueous micellar core. The nonfreezable water fraction has been recognized as the water located at the water/surfactant interface engaged in solvation of the surfactant head groups [97,98]. [Pg.482]

The vibrational dynamics of water solnbilized in lecithin-reversed micelles appears to be practically indistingnishable from those in bulk water i.e., in the micellar core an extensive hydrogen bonded domain is realized, similar, at least from the vibrational point of view, to that occurring in pure water [58], On the other hand, the reorientational dynamics of the water domain are strongly affected, due to water nanoconfmement and interfacial effects [105,106],... [Pg.483]

Electrolytes are obviously solubilized only in the aqueous micellar core. Adding electrolytes in water-containing AOT-reversed micelles has an effect that is opposite to that observed for direct micelles, i.e., a decrease in the micellar radius and in the intermicellar attractive interactions is observed. This has been attributed to the stabilization of AOT ions at the water/surfactant interface [128]. [Pg.485]

Sometimes, the physicochemical properties of ionic species solubilized in the aqueous core of reversed micelles are different from those in bulk water. Changes in the electronic absorption spectra of ionic species (1 , Co ", Cu " ) entrapped in AOT-reversed micelles have been observed, attributed to changes in the amount of water available for solvation [2,92,134], In particular, it has been observed that at low water concentrations cobalt ions are solubihzed in the micellar core as a tetrahedral complex, whereas with increasing water concentration there is a gradual conversion to an octahedral complex [135],... [Pg.485]

The different location of polar and amphiphilic molecules within water-containing reversed micelles is depicted in Figure 6. Polar solutes, by increasing the micellar core matter of spherical micelles, induce an increase in the micellar radius, while amphiphilic molecules, being preferentially solubihzed in the water/surfactant interface and consequently increasing the interfacial surface, lead to a decrease in the miceUar radius [49,136,137], These effects can easily be embodied in Eqs. (3) and (4), aUowing a quantitative evaluation of the mean micellar radius and number density of reversed miceUes in the presence of polar and amphiphilic solubilizates. Moreover it must be pointed out that, as a function of the specific distribution law of the solubihzate molecules and on a time scale shorter than that of the material exchange process, the system appears polydisperse and composed of empty and differently occupied reversed miceUes [136],... [Pg.485]

FIG. 6 Representation of spherical water-containing reversed micelles solubilizing a polar molecule (p) in the micellar core (A) or an amphiphilic molecule (a) in the palisade layer (B). [Pg.486]

A rather nnexpected solnbilization phenomenon has also been described, i.e., the pressnre-indnced encapsnlation of low-molecnlar-weight gases in the aqneons micellar core, followed by clathrate hydrate formation [144,145],... [Pg.487]

By flourescence techniques, it was observed that the fluorescence yield and lifetime of 1,8-anilinonaphthalenesulfonate decrease with an increase in the aqueous core of AOT-reversed micelles, while the position of the emission maximum shifts to longer wavelengths [64], These changes in the electronic properties were attributed to the peculiar effective polarity and viscosity of the micellar core and to their evolution with R. [Pg.487]

The solubilization of amino acids in AOT-reversed micelles has been widely investigated showing the importance of the hydrophobic effect as a driving force in interfacial solubihzation [153-157]. Hydrophilic amino acids are solubilized in the aqueous micellar core through electrostatic interactions. The amino acids with strongly hydrophobic groups are incorporated mainly in the interfacial layer. The partition coefficient for tryptophan and micellar shape are affected by the loading ratio of tryptophan to AOT [158],... [Pg.488]

By IR spectroscopy it was emphasized that the solubilization of amino acids or ohgopeptides in water-containing lecithin-reversed micelles involves structural changes in the aqueous micellar core [159]. [Pg.488]

Solubilization of a graft copolymer comprising a hydrophobic poly(dodecyl-methacrylate) backbone and hydrophilic poly(ethylene glycol) monomethyl ether side chains in water/AOT/cyclohexane w/o microemulsions was rationalized in terms of the backbone dissolved in the continuous apolar phase and the side chains entrapped within the aqueous micellar cores [189],... [Pg.490]

Another method is based on the evaporation of a w/o microemulsion carrying a water-soluble solubilizate inside the micellar core [221,222], The contemporaneous evaporation of the volatile components (water and organic solvent) leads to an increase in the concentration of micelles and of the solubilizate in the micellar core. Above a threshold value of the solubilizate concentration, it starts to crystallize in confined space. Nanoparticle coalescence could be hindered by surfactant adsorption and nanoparticle dispersion within the surfactant matrix. [Pg.493]

Finite amounts of glycerol (its viscosity is 945 cP at 25°C) can be dispersed in AOT/heptane or in CTAB/heptane + chloroform systems. The resulting solutions consist of thermodynamically stable, spherical droplets of glycerol stabilized by the surfactant [33,235]. The presence of glycerol within the micellar core results in a reduction of the surfactant mobility [137]. [Pg.493]

Nanogels made up of various intramolecularly cross-linked macromolecules have been prepared simply by performing the polymerization of hydrophilic monomers solubilized in the micellar core of reversed micelles, and they represent distinct macromolecular species from those obtained in bulk [191,240]. [Pg.494]

It is important to define clearly the characteristic features of block copolymer micelles. We mentioned above that the insoluble blocks formed a micellar core surrounded by a corona. Depending on the composition of the starting block copolymer, two limiting structures can be drawn (1) starlike micelles with a small core compared to the corona and (2) crew-cut micelles with a large core and highly stretched coronal chains. Both situations are schematically depicted in Fig. 2. [Pg.87]

The differences observed between AB di- and ABA triblock copolymers could be explained because two A blocks must escape from the micellar core in the case of ABA triblock chains. [Pg.93]

An obvious way to stabilize block copolymer micelles consists in the cross-linking of the micellar core or corona. Several strategies have been developed to reach this goal, as briefly illustrated in the following discussion. [Pg.96]


See other pages where Cores micellar is mentioned: [Pg.2572]    [Pg.2587]    [Pg.2587]    [Pg.2591]    [Pg.127]    [Pg.119]    [Pg.478]    [Pg.479]    [Pg.482]    [Pg.486]    [Pg.236]    [Pg.410]    [Pg.320]    [Pg.49]    [Pg.79]    [Pg.91]    [Pg.94]    [Pg.95]    [Pg.98]    [Pg.99]    [Pg.100]    [Pg.107]    [Pg.108]    [Pg.120]   
See also in sourсe #XX -- [ Pg.436 ]

See also in sourсe #XX -- [ Pg.312 ]

See also in sourсe #XX -- [ Pg.33 , Pg.34 ]

See also in sourсe #XX -- [ Pg.126 ]




SEARCH



Micellar core radius

© 2024 chempedia.info