Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water motion

We finish this section by comparing our results with NMR and incoherent neutron scattering experiments on water dynamics. Self-diffusion constants on the millisecond time scale have been measured by NMR with the pulsed field gradient spin echo (PFGSE) method. Applying this technique to oriented egg phosphatidylcholine bilayers, Wassail [68] demonstrated that the water motion was highly anisotropic, with diffusion in the plane of the bilayers hundreds of times greater than out of the plane. The anisotropy of... [Pg.492]

Among the dynamical properties the ones most frequently studied are the lateral diffusion coefficient for water motion parallel to the interface, re-orientational motion near the interface, and the residence time of water molecules near the interface. Occasionally the single particle dynamics is further analyzed on the basis of the spectral densities of motion. Benjamin studied the dynamics of ion transfer across liquid/liquid interfaces and calculated the parameters of a kinetic model for these processes [10]. Reaction rate constants for electron transfer reactions were also derived for electron transfer reactions [11-19]. More recently, systematic studies were performed concerning water and ion transport through cylindrical pores [20-24] and water mobility in disordered polymers [25,26]. [Pg.350]

The solvation dynamics of the three different micelle solutions, TX, CTAB, and SDS, exhibit time constants of 550, 285, 180 ps, respectively. The time constants show that solvent motion in these solutions is significantly slower than bulk water. The authors attribute the observed time constants to water motion in the Stern layer of the micelles. This conclusion is supported by the steady-state fluorescence spectra of the C480 probe in these solutions. The spectra exhibit a significant blue shift with respect the spectrum of the dye in bulk water. This spectral blue shift is attributed to the probe being solvated in the Stern layer and experiencing an environment with a polarity much lower than that of bulk water. [Pg.410]

This work also shows that the time constants for the ionic surfactant micelle solutions are twice as fast as the TX solution time constant. Differences between the Stern layers of the micelles appear to be the charge of the surfactant polar headgroups and the presence of counterions. However, these differences do not account for the observed dynamics. Since the polar headgroups and counterions should interfact more strongly with the water molecules, the water motion at the interface should be slower. This view is supported by recent investigations where systematic variation of surfactant counter-... [Pg.410]

The observation of slow, confined water motion in AOT reverse micelles is also supported by measured dielectric relaxation of the water pool. Using terahertz time-domain spectroscopy, the dielectric properties of water in the reverse micelles have been investigated by Mittleman et al. [36]. They found that both the time scale and amplitude of the relaxation was smaller than those of bulk water. They attributed these results to the reduction of long-range collective motion due to the confinement of the water in the nanometer-sized micelles. These results suggested that free water motion in the reverse micelles are not equivalent to bulk solvation dynamics. [Pg.412]

Investigation of water motion in AOT reverse micelles determining the solvent correlation function, C i), was first reported by Sarkar et al. [29]. They obtained time-resolved fluorescence measurements of C480 in an AOT reverse micellar solution with time resolution of > 50 ps and observed solvent relaxation rates with time constants ranging from 1.7 to 12 ns. They also attributed these dynamical changes to relaxation processes of water molecules in various environments of the water pool. In a similar study investigating the deuterium isotope effect on solvent motion in AOT reverse micelles. Das et al. [37] reported that the solvation dynamics of D2O is 1.5 times slower than H2O motion. [Pg.412]

In addition, water motion has been investigated in reverse micelles formed with the nonionic surfactants Triton X-100 and Brij-30 by Pant and Levinger [41]. As in the AOT reverse micelles, the water motion is substantially reduced in the nonionic reverse micelles as compared to bulk water dynamics with three solvation components observed. These three relaxation times are attributed to bulklike water, bound water, and strongly bound water motion. Interestingly, the overall solvation dynamics of water inside Triton X-100 reverse micelles is slower than the dynamics inside the Brij-30 or AOT reverse micelles, while the water motion inside the Brij-30 reverse micelles is relatively faster than AOT reverse micelles. This work also investigated the solvation dynamics of liquid tri(ethylene glycol) monoethyl ether (TGE) with different concentrations of water. Three relaxation time scales were also observed with subpicosecond, picosecond, and subnanosecond time constants. These time components were attributed to the damped solvent motion, seg-... [Pg.413]

Pant and Levinger have measured the solvation dynamics of water at the surface of semiconductor nanoparticles [48,49]. In this work, nanoparticulate Zr02 was used as a model for the Ti02 used in dye-sensitized solar photochemical cells. Here, the solvation dynamics for H2O and D2O at the nanoparticle surface are as fast or faster than bulk water motion. This is interpreted as evidence for reduced hydrogen bonding at the particle interface. [Pg.414]

The origins of the household appliance industry date back to the early decades of the last century, when simple tasks were transferred to household appliances. For example, in an early washing machine of the thirties, the water inlet and outlet as well as water motion and heating were controlled, while all other functions required were carried out manually. Refrigerators only provided the cooling power or the low temperature. In the forties of the last century, the first vacuum cleaners came on the market. [Pg.9]

Hubbert, M. K., 1940, The theory of ground-water motion. Journal of Geology 48, 785-944. [Pg.518]

Despite the care taken to depict the three types of water motion in Figures 9 through 11, it is difficult to illustrate the dynamic three-dimensional motion of water in a static figure. A basic, but very well-done narrated... [Pg.17]

In seawater, physical processes that transport water can also cause mass fluxes and, hence, are another means by which the salinity of seawater can be conservatively altered. The physical processes responsible for water movement within the ocean are turbulent mixing and water-mass advection. Turbulent mixing has been observed to follow Pick s first law and, hence, is also known as eddy diffusion. The rate at which solutes are transported by turbulent mixing and advection is usually much faster than that of molecular diffusion. Exceptions to this occur in locations where water motion is relatively slow, such as the pore waters of marine sediments. The effects of advection and turbulent mixing on the transport of chemicals are discussed further in Chapter 4. [Pg.61]

Water motion in the ocean is the result of two general phenomena, advection and turbulence. Advection causes water to experience large-scale net displacement (directed transport), whereas turbulent mixing involves the random motion of water molecules... [Pg.82]

In the open ocean, the major advective water motion is associated with the surfece-water geostrophic currents and meridional overturning circulation. These flow paths are shown in Figures 4.4b and 4.6. Advection is much fester than molecular diffusion and turbulence. This enables water masses to retain their original temperatures and salinities as they are advected away from their sites of formation. Slow turbulent mixing with adjacent water masses eventually alters this temperatme and salinity signal beyond... [Pg.84]

Turbulence and advection can lead to the mixing of adjacent water masses (or types). These water motions create horizontal and vertical gradients in temperature and salinity. As illustrated in Figures 4.17a and 4.17b, vertical mixing at the boundary between two water types produces waters of intermediate temperature and salinity. Since mixing does not alter the ratios of the conservative ions, the water in the mixing zone acquires a salinity intermediate between that of the two water types. The salinity of... [Pg.91]

The mathematical models used to infer rates of water motion from the conservative properties and biogeochemical rates from nonconservative ones were flrst developed in the 1960s. Although they require acceptance of several assumptions, these models represent an elegant approach to obtaining rate information from easily measured constituents in seawater, such as salinity and the concentrations of the nonconservative chemical of interest. These models use an Eulerian approach. That is, they look at how a conservative property, such as the concentration of a conservative solute C, varies over time in an infinitesimally small volume of the ocean. Since C is conservative, its concentrations can only be altered by water transport, either via advection and/or turbulent mixing. Both processes can move water through any or all of the three dimensions... [Pg.95]

In Chapter 4, we saw how conservative chemicals are used to trace the pathway and rates of water motion in the ocean. True conservative behavior is exhibited by a relatively small number of chemicals, such as the major ions and, hence, salinity. In contrast, most of the minor and trace elements display nonconservative behavior because they readily undergo chemical reactions under the environmental conditions found in seawater. The rates of these reactions are enhanced by the involvement of marine organisms, particularly microorganisms, as their enzymes serve as catalysts. Rates are also enhanced at particle interfaces for several reasons. First, microbes tend to have higher growth rates on particle surfaces. Second, the solution in direct contact with the particles tends to be highly enriched in reactants, thereby increasing reaction probabilities. Third, adsorption of solutes onto particle surfaces can create fevorable spatial orientations between reactants that also increases reaction probabilities. [Pg.101]

Above the atmospheric film lies the bulk atmosphere, which is well mixed by turbulence and advection and, hence, is homogeneous in gas composition. Below the sea surfece film lies the bulk seawater, which is also well mixed by turbulence and advection and is consequently homogeneous in gas composition. The thin films are regions in which turbulence and advection play minor roles, such that molecular diffusion controls the movement of gases. Because of the limited degree of air and water motion in... [Pg.159]

Nutrients are carried back to the sea surface by the return flow of deep-water circulation. The degree of horizontal segregation exhibited by a biolimiting element is thus determined by the rates of water motion to and from the deep sea, the flux of biogenic particles, and the element s recycling efficiency (/and from the Broecker Box model). If a steady state exists, the deep-water concentration gradient must be the result of a balance between the rates of nutrient supply and removal via the physical return of water to the sea surface. [Pg.240]

Some of the NPP models are based on the color imagery and some are not. In the latter, phytoplankton growth is estimated from coupled global circulation and biogeo-chemical models in which water motion controls nutrient availability. The water motion is controlled by climatic factors, such as temperature gradients and wind stress. The latest effort to compare model outputs was conducted with 31 different models and foimd that global estimates for a test year (1998) differed by as much as a factor of 2 The mean results from this model intercalibration experiment are shown in Table 23.7. [Pg.655]

Coastal upwelling The upward advection of water from the base of the mixed layer toward the sea surface caused by Ekman Transport. This water motion brings nutrient-rich water to the sea surface. [Pg.870]

The physical reason behind the modification at low wind speed as suggested by field data remains unclear. Yet, we should not forget that at low wind speed, the instantaneous wind is not the only significant source of motion at the water surface. Water motions caused by wind do not stop as soon as the wind ceases. Furthermore, thermal processes lead to density instabilities and convective motion, even if there is absolutely no wind. In fact, natural surface water bodies are hardly ever at rest. [Pg.905]

The processes of infiltration and evaporation of ground water depend strongly on the vertical profile of the soil layer. The following soil layers can be selected saturated and unsaturated. The saturated layer usually covers depths >lm. The upper unsaturated layer includes soil moisture around plants roots, the intermediate level, and the level of capillary water. Water motion through these layers can be described by the Darcy (1856) law, and the gravitation term KZ(P) in Equation (4.31) can be calculated by the equation ... [Pg.279]

The calculating procedure is based on sub-division of the Arctic Basin into grids (Eijk. This is realized by means of a quasi-linearization method (Nitu et al., 2000a). All differential equations of the SSMAE are substituted in each box E by easily integrable ordinary differential equations with constant coefficients. Water motion and turbulent mixing are realized in conformity with current velocity fields which are defined on the same coordinate grid as the E (Krapivin et al., 1998). [Pg.367]


See other pages where Water motion is mentioned: [Pg.476]    [Pg.408]    [Pg.410]    [Pg.411]    [Pg.411]    [Pg.412]    [Pg.412]    [Pg.416]    [Pg.354]    [Pg.218]    [Pg.83]    [Pg.95]    [Pg.161]    [Pg.164]    [Pg.208]    [Pg.237]    [Pg.681]    [Pg.508]    [Pg.17]    [Pg.68]    [Pg.1061]    [Pg.115]    [Pg.280]    [Pg.179]    [Pg.221]    [Pg.391]    [Pg.393]   
See also in sourсe #XX -- [ Pg.7 ]




SEARCH



Liquid water molecular motion

Motion of water

Rugged energy landscape for water motion

Translational motion of water inside a CNT

Water Brownian motion

Water interface, molecular motion

Water motion 35 translational energy

Water vibrational motions

Water, acid motion

Wave Motion on Falling Water Film

Why do dust particles move more quickly by Brownian motion in warm water

© 2024 chempedia.info