Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Antimony developments

In an open study, 72 patients each received meglumine antimoniate (60 mg/kg/day) or allopurinol (20 mg/kg/day) plus low-dose meglumine antimoniate (30 mg/kg/day) for 20 days, and each was followed for 30 days after the end of treatment (3). Only six patients in the combined treatment group complained of mild abdominal pain and nausea however, one patient who received meglumine antimoniate developed a skin eruption. Generalized muscle pain and weakness occurred in four patients. [Pg.80]

Although acrylonitrile manufacture from propylene and ammonia was first patented in 1949 (30), it was not until 1959, when Sohio developed a catalyst capable of producing acrylonitrile with high selectivity, that commercial manufacture from propylene became economically viable (1). Production improvements over the past 30 years have stemmed largely from development of several generations of increasingly more efficient catalysts. These catalysts are multicomponent mixed metal oxides mostly based on bismuth—molybdenum oxide. Other types of catalysts that have been used commercially are based on iron—antimony oxide, uranium—antimony oxide, and tellurium-molybdenum oxide. [Pg.182]

Mixed Metal Antimony Synergists Worldwide scarcities of antimony have prompted manufacturers to develop synergists that contain less antimony. Other metals have been found to work in concert with antimony to form a synergist that is as effective as antimony alone. Thermoguard CPA from Elf Atochem NA, which contains zinc in addition to antimony, can be used instead of antimony oxide in flexible poly(vinyl chloride) (PVC) as well as some polyolefin appHcations. The Oncor and AZ products which contain siUcon, zinc, and phosphoms from Anzon Inc. can be used in a similar manner. The mixed metal synergists are 10 to 20% less expensive than antimony trioxide. [Pg.455]

Two methods are used to measure pH electrometric and chemical indicator (1 7). The most common is electrometric and uses the commercial pH meter with a glass electrode. This procedure is based on the measurement of the difference between the pH of an unknown or test solution and that of a standard solution. The instmment measures the emf developed between the glass electrode and a reference electrode of constant potential. The difference in emf when the electrodes are removed from the standard solution and placed in the test solution is converted to a difference in pH. Electrodes based on metal—metal oxides, eg, antimony—antimony oxide (see Antimony AND ANTIMONY ALLOYS Antimony COMPOUNDS), have also found use as pH sensors (8), especially for industrial appHcations where superior mechanical stabiUty is needed (see Sensors). However, because of the presence of the metallic element, these electrodes suffer from interferences by oxidation—reduction systems in the test solution. [Pg.464]

Anodes. Lead—antimony (6—10 wt %) alloys containing 0.5—1.0 wt % arsenic have been used widely as anodes in copper, nickel, and chromium electrowinning and metal plating processes. Lead—antimony anodes have high strength and develop a corrosion-resistant protective layer of lead dioxide during use. Lead—antimony anodes are resistant to passivation when the current is frequendy intermpted. [Pg.57]

In the days of alchemy and the phlogiston theory, no system of nomenclature that would be considered logical ia the 1990s was possible. Names were not based on composition, but on historical association, eg, Glauber s salt for sodium sulfate decahydrate and Epsom salt for magnesium sulfate physical characteristics, eg, spirit of wiae for ethanol, oil of vitriol for sulfuric acid, butter of antimony for antimony trichloride, Hver of sulfur for potassium sulfide, and cream of tartar for potassium hydrogen tartrate or physiological behavior, eg, caustic soda for sodium hydroxide. Some of these common or trivial names persist, especially ia the nonchemical Hterature. Such names were a necessity at the time they were iatroduced because the concept of molecular stmcture had not been developed, and even elemental composition was incomplete or iadeterminate for many substances. [Pg.115]

Esterification ofTerephthalicAcid. Esterification of terephthaUc acid is also used to produce dimethyl terephthalate commercially, although the amount made by this process has declined. Imperial Chemical Industries, Eastman Kodak, Amoco, Toray, Mitsubishi, and Mitsui Petrochemical have all developed processes. Esterification (qv) generally uses a large excess of methanol in a Hquid process at 250—300°C. The reaction proceeds rapidly without a catalyst, but metal catalysts such as zinc, molybdenum, antimony, and tin can be used. Conversion to dimethyl terephthalate is limited by equiHbrium, but yields of 96% have been reported (75,76). [Pg.489]

Solders. In spite of the wide use and development of solders for millennia, as of the mid-1990s most principal solders are lead- or tin-based alloys to which a small amount of silver, zinc, antimony, bismuth, and indium or a combination thereof are added. The principal criterion for choosing a certain solder is its melting characteristics, ie, soHdus and Hquidus temperatures and the temperature spread or pasty range between them. Other criteria are mechanical properties such as strength and creep resistance, physical properties such as electrical and thermal conductivity, and corrosion resistance. [Pg.241]

A number of flame-retardant finishes have been developed for outdoor cotton fabrics. Various experimental and commercial finishes have been compared (149). Most noteworthy is that THPOH—NH finishes do not perform as well outdoors as the THPOH—NH precondensate finishes. Likewise, antimony oxide—halogen finishes perform exceptionally well on outdoor fabrics. [Pg.448]

Iron, copper, arsenic, and antimony can be readily removed by the above pyrometaHurgical processes or variations of these (3). However, for the removal of large quantities of lead or bismuth, either separately or together, conventional electrolysis or a newly developed vacuum-refining process is used. The latter is now in use in Austraha, BoHvia, Mexico, and the CIS (5). [Pg.58]

A process has been developed to recover antimony and arsenic from speiss and other materials (11). The speiss is roasted along with a source of sohd sulfur and coal or coke at a temperature of 482—704 °C for a sufficient time to volatilise arsenic and antimony oxides. The arsenic can then be separated from the antimony through careful control of the off-gas temperature and oxygen potential (12). [Pg.196]

The Bunker Hill Co. (15) and ASARCO, Inc. (16) have developed processes for the leaching and electrowinning of antimony from tetrahedrite ores. As of 1991, only Sunshine Mining Co. was electrowinning antimony metal. [Pg.196]

Microbiological leaching of copper and uranium has been commercially developed and research has iadicated that microorganisms may be used to oxidize complex antimony sulfide minerals (22,23). If this technology is developed commercially, it may aHow for the exploitation of many low grade antimony deposits. [Pg.196]

Demand for high performance SLI batteries has led to the development of smaller, lighter batteries that require less maintenance. The level of antimony is being decreased from the conventional 3—5% to 1.75—2.75% to minimise the detrimental effects. Lead alloys that contain no antimony have also been introduced. Hybrid batteries use a low antimony—lead alloy in the positive plate and a calcium—lead alloy in the negative plate. [Pg.198]

Because of the outbreak of antimony-resistant leishmania sis and the need to develop an oraky-adrninistered therapy, the use of many other compounds has been considered. Those that appear to have clinical utility ate aHoputinol (62), ketoconazole (63), and both systemicaHy and topically applied paromomycin (8) (see Antiparasitic agents, antimycotics). [Pg.270]

Zinc Borates. A series of hydrated 2inc borates have been developed for use as fire-retardant additives in coatings and polymers (59,153). Worldwide consumption of these 2inc salts is several thousand metric tons per year. A substantial portion of this total is used in vinyl plastics where 2inc borates ate added alone or in combination with other fire retardants such as antimony oxide or alurnina trihydrate. [Pg.209]

Additive inhibitors have been developed to reduce the contaminant coke produced through nickel-cataly2ed reactions. These inhibitors are injected into the feed stream going to the catalytic cracker. The additive forms a nickel complex that deposits the nickel on the catalyst in a less catalyticaHy active state. The first such additive was an antimony compound developed and first used in 1976 by Phillips Petroleum. The use of the antimony additive reportedly reduced coke yields by 15% in a commercial trial (17). [Pg.210]

During the 1980s, antimony was widely used in FCCUs that had a problem with contaminant metals. In the late 1980s, other additives were introduced to combat the contaminant metals, eg. Chevron introduced a bismuth-based additive, which is claimed to provide performance similar to antimony (18). Also in the late 1980s, cracking catalysts were developed with metals traps that appear to be so effective in containing the adverse effects of contaminant metals that additive-type inhibitors are no longer needed (19). [Pg.210]

A.sahi Chemical EHD Processes. In the late 1960s, Asahi Chemical Industries in Japan developed an alternative electrolyte system for the electroreductive coupling of acrylonitrile. The catholyte in the Asahi divided cell process consisted of an emulsion of acrylonitrile and electrolysis products in a 10% aqueous solution of tetraethyl ammonium sulfate. The concentration of acrylonitrile in the aqueous phase for the original Monsanto process was 15—20 wt %, but the Asahi process uses only about 2 wt %. Asahi claims simpler separation and purification of the adiponitrile from the catholyte. A cation-exchange membrane is employed with dilute sulfuric acid in the anode compartment. The cathode is lead containing 6% antimony, and the anode is the same alloy but also contains 0.7% silver (45). The current efficiency is of 88—89%, with an adiponitrile selectivity of 91%. This process, started by Asahi in 1971, at Nobeoka City, Japan, is also operated by the RhcJ)ne Poulenc subsidiary, Rhodia, in Bra2il under Hcense from Asahi. [Pg.101]

A one-pot synthesis of alkyl perfluoroalkyl ketones has been developed. Phosphoranes, generated in situ, are acylated with a perfluoroacyl anhydnde, and the resultmg phosphonium salts are hydrolyzed with alkali [4S (equation 48) Hydrolysis of a carbon-sulfur bond in 2-chloro-2,4,4-trifluoro-1,3-dithietane-S-trioxide, which can be obtained from 2,2,4,4-tetrachloro-l,3-dithietane by fluor-mation with antimony trifluoride followed by selective oxidations, opens the nng to produce 2-chloro-1,1,2-trifluorodimethyl sulfone [49] (equation 49)... [Pg.437]

Phillips Petroleum developed antimony for nickel passivation. [Pg.4]

Prengaman, R. E., Structure Control of Non-Antimonial Lead Alloys via Alloy Additions, Heat Treatment and Cold Working, Pb80, Ed. Proc. 7lh Ini. Lead Conf., Madrid, Lead Development Association, London (1983)... [Pg.738]


See other pages where Antimony developments is mentioned: [Pg.317]    [Pg.317]    [Pg.203]    [Pg.452]    [Pg.487]    [Pg.490]    [Pg.150]    [Pg.330]    [Pg.290]    [Pg.385]    [Pg.545]    [Pg.370]    [Pg.322]    [Pg.506]    [Pg.528]    [Pg.423]    [Pg.199]    [Pg.572]    [Pg.386]    [Pg.375]    [Pg.378]    [Pg.86]    [Pg.156]    [Pg.261]    [Pg.286]    [Pg.172]    [Pg.151]    [Pg.155]   
See also in sourсe #XX -- [ Pg.414 , Pg.415 ]




SEARCH



Lead-antimony alloys development

Recent Developments in the Field of Pentaaryl Antimony Compounds

© 2024 chempedia.info