Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mitsui Petrochemicals

Montedison and Mitsui Petrochemical iatroduced MgCl2-supported high yield catalysts ia 1975 (7). These third-generation catalyst systems reduced the level of corrosive catalyst residues to the extent that neutralization or removal from the polymer was not required. Stereospecificity, however, was iasufficient to eliminate the requirement for removal of the atactic polymer fraction. These catalysts are used ia the Montedison high yield slurry process (Fig. 9), which demonstrates the process simplification achieved when the sections for polymer de-ashing and separation and purification of the hydrocarbon diluent and alcohol are eliminated (121). These catalysts have also been used ia retrofitted RexaH (El Paso) Hquid monomer processes, eliminating the de-ashing sections of the plant (Fig. 10) (129). [Pg.415]

Third-generation high yield supported catalysts are also used in processes in which Hquid monomer is polymerized in continuous stirred tank reactors. The Hypol process (Mitsui Petrochemical), utilizes the same supported catalyst technology as the Spheripol process (133). Rexene has converted the hquid monomer process to the newer high yield catalysts. Shell uses its high yield (SHAC) catalysts to produce homopolymers and random copolymers in the Lippshac process (130). [Pg.416]

Phenol Vi Cyclohexene. In 1989 Mitsui Petrochemicals developed a process in which phenol was produced from cyclohexene. In this process, benzene is partially hydrogenated to cyclohexene in the presence of water and a mthenium-containing catalyst. The cyclohexene then reacts with water to form cyclohexanol or oxygen to form cyclohexanone. The cyclohexanol or cyclohexanone is then dehydrogenated to phenol. No phenol plants have been built employing this process. [Pg.289]

Worldwide, approximately 85% of acetone is produced as a coproduct with phenol. The remaining 17% is produced by on-purpose acetone processes such as the hydration of propylene to 2-propanol and the dehydrogenation of 2-propanol to acetone. The cost of production of 2-propanol sets the floor price of acetone as long as the acetone demand exceeds the coproduct acetone supply. However, there is a disparity in the growth rates of phenol and acetone, with phenol demand projected at 3.0%/yr and acetone demand at 2.0%/yr. If this continues, the coproduct supply of acetone will exceed the total acetone demand and on-purpose production of acetone will be forced to shut down the price of acetone is expected to fall below the floor price set by the on-purpose cost production. Projections indicate that such a situation might occur in the world market by 2010. To forestall such a situation, companies such as Mitsui Petrochemical and Shinnippon (Nippon Steel) have built plants without the coproduction of acetone. [Pg.290]

Esterification ofTerephthalicAcid. Esterification of terephthaUc acid is also used to produce dimethyl terephthalate commercially, although the amount made by this process has declined. Imperial Chemical Industries, Eastman Kodak, Amoco, Toray, Mitsubishi, and Mitsui Petrochemical have all developed processes. Esterification (qv) generally uses a large excess of methanol in a Hquid process at 250—300°C. The reaction proceeds rapidly without a catalyst, but metal catalysts such as zinc, molybdenum, antimony, and tin can be used. Conversion to dimethyl terephthalate is limited by equiHbrium, but yields of 96% have been reported (75,76). [Pg.489]

A number of high melting poiat semiaromatic nylons, iatroduced ia the 1990s, have lower moisture absorption and iacreased stiffness and strength. Apart from nylon-6 /6,T (copolymer of 6 and 6,T), the exact stmcture of these is usually proprietary and they are identified by trade names. Examples iaclude Zytel HTN (Du Pont) Amodel, referred to as polyphthalamide or PPA (Amoco) and Aden (Mitsui Petrochemical). Properties for polyphthalamide are given ia Table 2. A polyphthalamide has been defined by ASTM as "a polyamide ia which the residues of terephthaUc acid or isophthahc acid or a combination of the two comprise at least 60 molar percent of the dicarboxyhc acid portion of the repeating stmctural units ia the polymer chain" (18). [Pg.272]

Most commercial processes produce polypropylene by a Hquid-phase slurry process. Hexane or heptane are the most commonly used diluents. However, there are a few examples in which Hquid propylene is used as the diluent. The leading companies involved in propylene processes are Amoco Chemicals (Standard OH, Indiana), El Paso (formerly Dart Industries), Exxon Chemical, Hercules, Hoechst, ICl, Mitsubishi Chemical Industries, Mitsubishi Petrochemical, Mitsui Petrochemical, Mitsui Toatsu, Montedison, Phillips Petroleum, SheU, Solvay, and Sumimoto Chemical. Eastman Kodak has developed and commercialized a Hquid-phase solution process. BASE has developed and commercialized a gas-phase process, and Amoco has developed a vapor-phase polymerization process that has been in commercial operation since early 1980. [Pg.128]

S. Kasura, Mitsui Petrochemical Industries Ltd., Japanese Patent, 6,128,539 (1986). [Pg.683]


See other pages where Mitsui Petrochemicals is mentioned: [Pg.188]    [Pg.94]    [Pg.249]    [Pg.451]    [Pg.170]    [Pg.510]    [Pg.510]    [Pg.348]    [Pg.349]    [Pg.349]    [Pg.349]    [Pg.359]    [Pg.359]    [Pg.495]    [Pg.503]    [Pg.503]    [Pg.73]    [Pg.507]    [Pg.407]    [Pg.418]    [Pg.421]    [Pg.422]    [Pg.432]    [Pg.432]    [Pg.433]    [Pg.288]    [Pg.487]    [Pg.491]    [Pg.239]    [Pg.392]    [Pg.235]    [Pg.235]    [Pg.317]    [Pg.317]    [Pg.378]    [Pg.527]    [Pg.82]    [Pg.120]    [Pg.302]    [Pg.352]    [Pg.67]    [Pg.504]    [Pg.156]   
See also in sourсe #XX -- [ Pg.39 , Pg.87 ]




SEARCH



Petrochemicals

© 2024 chempedia.info