Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Urea cycle amino acids

The inherited enzyme deficiencies listed in Table 11.2 lead to the accumulation of substrates and deficiencies of products. For correct interpretation of laboratory results, one need be aware that substrate accumulation can affect the prior enzyme in the pathway (e.g. increased carbamyl phosphate inhibits CPS). A deficiency of urea cycle intermediates (transport or enzyme products or dietary substances) e.g. arginine or ornithine, is often rate limiting. It can initiate a vicious cycle, which worsens the urea synthetic capacity in the cytosol (e.g. by limiting protein synthesis), or in the mitochondria (deficient stimulation of NAGS and of substrate for OTC). Measured plasma values reflect cytosolic metabolite concentrations, not those of mitochondria. Protein catabolism contributes to the plasma amino acid values. Thus, the interpretation of results for plasma arginine, proline and lysine must be done within the context of the pattern found for all of the amino acids. Urea concentrations depend upon the arginine in the cytosol originating from protein catabolism, urea cycle synthesis, and therapeutic applications. [Pg.263]

Then N-Boc-O-benzylserine is coupled to the free amino group with DCC. This concludes one cycle (N° -deprotection, neutralization, coupling) in solid-phase synthesis. All three steps can be driven to very high total yields (< 99.5%) since excesses of Boc-amino acids and DCC (about fourfold) in CHjClj can be used and since side-reactions which lead to soluble products do not lower the yield of condensation product. One side-reaction in DCC-promoted condensations leads to N-acylated ureas. These products will remain in solution and not reaa with the polymer-bound amine. At the end of the reaction time, the polymer is filtered off and washed. The times consumed for 99% completion of condensation vary from 5 min for small amino acids to several hours for a bulky amino acid, e.g. Boc-Ile, with other bulky amino acids on a resin. A new cycle can begin without any workup problems (R.B. Merrifield, 1969 B.W. Erickson, 1976 M. Bodanszky, 1976). [Pg.232]

One step in the urea cycle for ridding the body of ammonia is the conversion of argininosuccinate to the amino acid arginine plus fumarate. Propose a mechanism for the reaction, and show the structure of arginine. [Pg.405]

If the effect of water stress is to alter regulation of the pathway such that the rate constant for reaction A G is increased or A CP is decreased (which would have an overall effect of conserving nitrogen), then the fractionation at G can be shown to be thereby increased. At present this is speculative, but in fact explanations for the water-stress effect using flow-models are rather constrained. For example, it is not possible to relate what might happen at the kidneys (e.g., resorption of urea) to the amino acid body pool, since the urea cycle is non-reversible. It should be possible to design experiments that test this suggestion. [Pg.234]

The amino acids are required for protein synthesis. Some must be supplied in the diet (the essential amino acids) since they cannot be synthesized in the body. The remainder are nonessential amino acids that are supplied in the diet but can be formed from metabolic intermediates by transamination, using the amino nitrogen from other amino acids. After deamination, amino nitrogen is excreted as urea, and the carbon skeletons that remain after transamination (1) are oxidized to CO2 via the citric acid cycle, (2) form glucose (gluconeogenesis), or (3) form ketone bodies. [Pg.124]

While ammonia, derived mainly from the a-amino nitrogen of amino acids, is highly toxic, tissues convert ammonia to the amide nitrogen of nontoxic glutamine. Subsequent deamination of glutamine in the liver releases ammonia, which is then converted to nontoxic urea. If liver function is compromised, as in cirrhosis or hepatitis, elevated blood ammonia levels generate clinical signs and symptoms. Rare metabolic disorders involve each of the five urea cycle enzymes. [Pg.242]

The nitrogen contained in the amino acids is usually disposed of through the urea cycle. One of the early, if not the first, steps in amino acid catabolism involves a transamination using oxaloacetate or a-ketoglutarate as the amino-group acceptor. This converts the amino acid into a 2-keto acid, which can then be metabolized further. [Pg.201]

The urea cycle is essential for the detoxification of ammonia 678 Urea cycle defects cause a variety of clinical syndromes, including a metabolic crisis in the newborn infant 679 Urea cycle defects sometimes result from the congenital absence of a transporter for an enzyme or amino acid involved in the urea cycle 680 Successful management of urea cycle defects involves a low-protein diet to minimize ammonia production as well as medications that enable the excretion of ammonia nitrogen in forms other than urea 680... [Pg.667]

Treatment of aminoacidurias with a low-protein diet may influence brain chemistry. It should be emphasized that the treatment of the patient with an aminoaciduria may affect brain chemistry, perhaps in an adverse manner. Nearly all patients receive a low-protein diet. Indeed, undiagnosed patients sometimes avoid consumption of protein, which they feel intuitively can cause lethargy, headache, nausea and mental confusion. As dietary protein declines, the intake of carbohydrate frequently increases. The concomitant rise of endogenous insulin secretion favors an increase in the ratio of the concentration of blood tryptophan to that of other amino acids, thereby promoting the entry of tryptophan to the brain. The latter amino acid is precursor to brain serotonin, which tends to increase. This physiology is known to be operative in patients with urea cycle defects. [Pg.671]

Diagnosis of a urea cycle defect in the older child can be elusive. Patients may present with psychomotor retardation, growth failure, vomiting, behavioral abnormalities, perceptual difficulties, recurrent cerebellar ataxia and headache. It is therefore essential to monitor the blood ammonia in any patient with unexplained neurological symptoms, but hyperammonemia is inconstant with partial enzymatic defects. Measurement of blood amino acids and urinary orotic acid is indicated. [Pg.679]

Urea cycle defects sometimes result from the congenital absence of a transporter for an enzyme or amino acid involved in the urea cycle. [Pg.680]

Cheung, C.W., Cohen, N.G., Raijman, L. (1989). Channeling of urea cycle intermediates in situ in permeabilized hepatocytes. J. Biol. Chem. 264,4038-4044. Cohen, P.P. (1954). Nitrogen metabolism of amino acids. In Chemical Pathways in Metabolism (Greenberg, D.M., Ed.), Vol. 2, pp. 1-46. Academic Press, New York. Fisher, R.B. (1954). Protein Metabolism. Methuen, London. [Pg.112]

In addition to the common pathways, glycolysis and the TCA cycle, the liver is involved with the pentose phosphate pathway regulation of blood glucose concentration via glycogen turnover and gluconeogenesis interconversion of monosaccharides lipid syntheses lipoprotein formation ketogenesis bile acid and bile salt formation phase I and phase II reactions for detoxification of waste compounds haem synthesis and degradation synthesis of non-essential amino acids and urea synthesis. [Pg.171]

The reaction shown in Figure 8.6 is also important in the liver where glutamate dehydrogenase is involved in the catabolism of amino acids and the entry of nitrogen into the urea cycle, as explained in Chapter 6. [Pg.268]

This enzyme is found in many tissues, where it catalyzes the reversible oxidative deamination of the amino acid glutamate. It produces the citric acid cycle intermediate a-ketoglutarate, which serves as an entry point to the cycle for a group of glucogenic amino adds. Its role in urea synthesis and nitrogen removal is stiU controversial, but has heen induded in Figure 1-17-1 and Table 1-17-1. [Pg.244]

Ammonia is generated mainly from the metabolism of amino acids and from the catabolism of purine and pyrimidine bases, which are produced from nucleic acids. Since it is toxic, it must be converted to a non-toxic compound for excretion from the body. This is achieved via the ornithine cycle, more usually known as the urea cycle. [Pg.211]

Only a few important representatives of the non-proteinogenic amino acids are mentioned here. The basic amino acid ornithine is an analogue of lysine with a shortened side chain. Transfer of a carbamoyl residue to ornithine yields citrulline. Both of these amino acids are intermediates in the urea cycle (see p.l82). Dopa (an acronym of 3,4-dihydroxy-phenylalanine) is synthesized by hydroxyla-tion of tyrosine. It is an intermediate in the biosynthesis of catecholamines (see p.352) and of melanin. It is in clinical use in the treatment of Parkinson s disease. Selenocys-teine, a cysteine analogue, occurs as a component of a few proteins—e.g., in the enzyme glutathione peroxidase (see p.284). [Pg.62]

Two amino acids—asparagine and glutamine—contain acid-amide groups in the side chains, from which NH3 can be released by hydrolysis (hydrolytic deamination). In the blood, glutamine is the most important transport molecule for amino nitrogen. Hydrolytic deamination of glutamine in the liver also supplies the urea cycle with NH3. [Pg.180]

There is also a corresponding circulation system for the amino acid alanine. The alanine cycle in the liver not only provides alanine as a precursor for gluconeogenesis, but also transports to the liver the amino nitrogen arising in muscles during protein degradation. In the liver, it is incorporated into urea for excretion. [Pg.338]

Vinblastine suppresses cell growth during metaphase, affects amino acid metabolism, in particular at the level of including glutamine acid into the citric acid cycle and preventing it from transformation into urea, and it also inhibits protein and nucleic acid synthesis. [Pg.405]

Ornithine is a metabolically quite active amino acid, and the important precursor of pyrrolidine nucleus, which is found in pyrrolizidine alkaloids. Ornithine itself is a non-protein amino acid formed mainly from L-glumate in plants, and synthesized from the urea cycle in animals as a result of the reaction catalyzed by enzymes in arginine. [Pg.73]

It interferes with metabolic pathways of amino acids leading from glutamic acid to the citric acid (Krebs) cycle and urea. [Pg.376]

Urea is a colorless, odorless crystalline substance discovered by Hilaire Marin Rouelle (1718—1779) in 1773, who obtained urea by boiling urine. Urea is an important biochemical compound and also has numerous industrial applications. It is the primary nitrogen product of protein (nitrogen) metabolism in humans and other mammals. The breakdown of amino acids results in ammonia, NH3, which is extremely toxic to mammals. To remove ammonia from the body, ammonia is converted to urea in the liver in a process called the urea cycle. The urea in the blood moves to the kidney where it is concentrated and excreted with urine. [Pg.288]

In the urea cycle, two molecules of ammonia combine with a molecule of carbon dioxide to produce a molecule of urea and water. The overall cycle involves a series of biochemical reactions dependent on enzymes and carrier molecules. During the urea cycle the amino acid ornithine (C5H12N202) is produced, so the urea cycle is also called the ornithine cycle. A number of urea cycle disorders exist. These are genetic disorders that result in deficiencies in enzymes needed in one of the steps in the urea cycle. When a urea cycle deficiency occurs, ammonia cannot be eliminated from the body and death ensues. [Pg.289]

FIGURE 3-8 Uncommon amino acids, (a) Some uncommon amino acids found in proteins. All are derived from common amino acids. Extra functional groups added by modification reactions are shown in red. Desmosine is formed from four Lys residues (the four carbon backbones are shaded in yellow). Note the use of either numbers or Creek letters to identify the carbon atoms in these structures, (b) Ornithine and citrulline, which are not found in proteins, are intermediates in the biosynthesis of arginine and in the urea cycle. [Pg.81]


See other pages where Urea cycle amino acids is mentioned: [Pg.415]    [Pg.415]    [Pg.633]    [Pg.20]    [Pg.761]    [Pg.251]    [Pg.169]    [Pg.202]    [Pg.86]    [Pg.274]    [Pg.189]    [Pg.58]    [Pg.306]    [Pg.324]    [Pg.338]    [Pg.64]    [Pg.289]    [Pg.68]    [Pg.72]    [Pg.214]    [Pg.596]    [Pg.664]    [Pg.667]    [Pg.668]   
See also in sourсe #XX -- [ Pg.678 , Pg.678 , Pg.679 , Pg.680 ]




SEARCH



Amino-urea—

Urea cycle

Ureas acidity

© 2024 chempedia.info