Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amine polymer bound

Approach C is based on a-bromoacetic acid as key building block and starts from Rink-amine. After coupling of a-bromoacetic acid yielding 25, followed by nucleophilic displacement with an amine, polymer-bound derivative 22 is obtained. Repetition of this cycle of events and cleavage from the resin gives rise to peptoid 20. [Pg.199]

Allylic acetoxy groups can be substituted by amines in the presence of Pd(0) catalysts. At substituted cyclohexene derivatives the diastereoselectivity depends largely on the structure of the palladium catalyst. Polymer-bound palladium often leads to amination at the same face as the aoetoxy leaving group with regioselective attack at the sterically less hindered site of the intermediate ri -allyl complex (B.M. Trost, 1978). [Pg.164]

Then N-Boc-O-benzylserine is coupled to the free amino group with DCC. This concludes one cycle (N° -deprotection, neutralization, coupling) in solid-phase synthesis. All three steps can be driven to very high total yields (< 99.5%) since excesses of Boc-amino acids and DCC (about fourfold) in CHjClj can be used and since side-reactions which lead to soluble products do not lower the yield of condensation product. One side-reaction in DCC-promoted condensations leads to N-acylated ureas. These products will remain in solution and not reaa with the polymer-bound amine. At the end of the reaction time, the polymer is filtered off and washed. The times consumed for 99% completion of condensation vary from 5 min for small amino acids to several hours for a bulky amino acid, e.g. Boc-Ile, with other bulky amino acids on a resin. A new cycle can begin without any workup problems (R.B. Merrifield, 1969 B.W. Erickson, 1976 M. Bodanszky, 1976). [Pg.232]

The allyl bromides formed by method (A) contain 25% of the undesired (Z)-isomer. The selectivity of the palladium-catalyzed amination can be steered by the application of polymer-bound systems (see section 2.6.3 B. M. Trost, 1978),... [Pg.303]

A polymer-bound hindered amine light stabilizer [P-HALS] has been synthesized by terminating the living anionic polymerization of isoprene with 4(2,3-epoxy pro-poxy)-1,2,2,6,6-pentamethylpiperidine followed by hydrogenation of the resulting polymer to E-P copolymer using Zeigler type catalyst [40] ... [Pg.402]

It has been shown that the imidoyl chloride moiety of 2(lff)-pyrazinones can imdergo an easy addition/elimination reaction with alkyl amines [24], while reactions with anilines proceed under harsher conditions. Ullmann coupling [109-113] of 2(lff)-pyrazinones with substituted anilines could open the way to the libraries of physiologically active compounds useful in inhibiting HIV replication [7]. Polymer-bound pyrazinone was successfully... [Pg.294]

Furthermore, styrene polymer-bound BTMA Br3 was also used as the reagent for the preparation of polybromo-substituted aromatic amines (ref. 12). [Pg.34]

Acid derivatives that can be converted to amides include thiol acids (RCOSH), thiol esters (RCOSR), ° acyloxyboranes [RCOB(OR )2]. silicic esters [(RCOO)4Si], 1,1,1-trihalo ketones (RCOCXa), a-keto nitriles, acyl azides, and non-enolizable ketones (see the Haller-Bauer reaction 12-31). A polymer-bound acyl derivative was converted to an amide using tributylvinyl tin, trifluoroacetic acid, AsPh3, and a palladium catalyst. The source of amine in this reaction was the polymer itself, which was an amide resin. [Pg.512]

Transformations to polymer-bound amino compounds, which are often useful as ligands for metals ions or other free species (67), employ a wide selection of organic reactions. Quaternary ammonium salts result from heating isolated polymer tosylate with tertiary amine they may also be prepared in one step from (hydroxyethyl)polystyrene and toluenesulfonyl chloride and a two-fold excess of amine. [Pg.28]

Secondary amines, such as pyrrolidine, must be alkylated with care too polar a solvent leads to participation of a second nearby polymer-bound alkylant in the formation of a quaternary ammonium salt, along with the desired immobilized trialkyl amine. The exception, as seen above, is diisopropylamine, which refuses to displace tosylate even in the refluxing pure amine, or in hot dimethyl-formamide or other polar solvent, while metal diisopropylamide is notorious as a powerful non-nucleophilic base. However, carboxamide is not difficult to form from (carboxymethyl)polystyrene, again using toluenesulfonyl chloride as condensing agent this can then be reduced to (diisopropyl-ethylaminoethyl)polystyrene, which is of interest as a polymer-bound non-nucleophilic base. ... [Pg.28]

Phthalimide and N-alkyl-toluenesulfonamide salts are similarly alkylated, and can furthermore be cleaved to polymer-bound secondary and primary amines respectively (57). Potassium pyrrolidonide gives polymer-bound tertiary amide, of interest as a solid cosolvent catalyst ... [Pg.29]

It is interesting that one observes exclusive TV-acylation of ethanolamine even when the molar ratio of polymer-bound acylimidazole to amine is 1 2. [Pg.112]

A more recent publication by Weigand and Pelka has disclosed a polymer-bound Buchwald-Hartwig amination [40], Activated, electron-deficient aryl halides were coupled with conventional PS Rink resin under microwave irradiation. Subsequent acidic cleavage afforded the desired aryl amines in moderate to good yields (Scheme 7.22). Commercially available Fmoc-protected Rink amide resin was suspended in 20% piperidine/N,N-dimethylformamide at room temperature for 30 min to achieve deprotection. After washing and drying, the resin was placed in a silylated microwave vessel and suspended in dimethoxyethane (DME)/tert-butanol... [Pg.309]

A recent study concerned the microwave-assisted parallel synthesis of di- and tri-substituted ureas utilizing dedicated 96-well plates in the CombiCHEM system [60], In a typical procedure, modification of the Marshall resin utilized was achieved by treatment with p-nitrophenyl chloroformate and N-methylmorpholine (NMM) in dichloromethane at low temperatures. The resulting resin was further modified by attaching various amines to obtain a set of polymer-bound carbamates (Scheme 7.48). [Pg.329]

For the cydative cleavage step, it turned out that aprotic conditions were definitely superior to the use of protic media. Thus, employing N,N-dimethylformamide as solvent at somewhat elevated temperatures furnished the desired compounds in high yields and excellent purities. Having established the optimized conditions, various phthalic acids and amines were employed to prepare a set of phthalimides (Scheme 7.51). However, the nature of the amine was seen to have an effect on the outcome of the reaction. Benzyl derivatives furnished somewhat lower yields, probably due to the reduced activities of these amines. Aromatic amines could not be included in the study as auto-induced ring-closure occurred during the conversion of the polymer-bound phthalic acid. [Pg.331]

The isocyanates were added to the respective resin-bound amines suspended in dichloromethane in open glass tubes. The resulting reaction mixtures were each irradiated in a single-mode microwave cavity for 2 min intervals (no temperature measurement given) (Scheme 7.52). After each step, samples were collected for on-bead FTIR analysis. Within 12 min (six irradiation cycles), each reaction had reached completion. Acid cleavage of the polymer-bound ureas furnished the corresponding hydrouracils. [Pg.332]

Weik and Rademann have described the use of phosphoranes as polymer-bound acylation equivalents [65]. The authors chose a norstatine isostere as a synthetic target and employed classical polymer-bound triphenylphosphine in their studies (Scheme 7.54). Initial alkylation of the polymer-supported reagent was achieved with bromoacetonitrile under microwave irradiation. Simple treatment with triethyl-amine transformed the polymer-bound phosphonium salt into the corresponding stable phosphorane, which could be efficiently coupled with various protected amino acids. In this acylation step, the exclusion of water was crucial. [Pg.333]

A variation of this method led to the generation of bis-benzimidazoles [81, 82], The versatile immobilized ortho-phenylenediamine template was prepared as described above in several microwave-mediated steps. Additional N-acylation exclusively at the primary aromatic amine moiety was achieved utilizing the initially used 4-fluoro-3-nitrobenzoic acid at room temperature (Scheme 7.72). Various amines were used to introduce diversity through nucleophilic aromatic substitution. Cyclization to the polymer-bound benzimidazole was achieved by refluxing for several hours in a mixture of trifluoroacetic acid and chloroform. Individual steps at ambient temperature for selective reduction, cyclization with several aldehydes, and final detachment from the polymer support were necessary in order to obtain the desired bis-benzimidazoles. A set of 13 examples was prepared in high yields and good purities [81]. [Pg.344]

Additionally, the authors chose 3-chloropropionyl chloride as the immobilized building block in order to carry out a ring-expansion approach, which led to the generation of a 14-member library of thioxotetrahydropyrimidinones [85, 86], The initially prepared polymer-bound chloropropionyl ester was efficiently transformed into the corresponding diamines by transamination utilizing several primary amines. These diamine intermediates could also be obtained by treatment of the pure polymeric support with acryloyl chloride and subsequent addition of the appropriate amines (Scheme 7.74). [Pg.347]

The soluble polymer support was dissolved in dichloromethane and treated with 3 equivalents of chloroacetyl chloride for 10 min under microwave irradiation. The subsequent nucleophilic substitution utilizing 4 equivalents of various primary amines was carried out in N,N-dimethylformamide as solvent. The resulting PEG-bound amines were reacted with 3 equivalents of aryl or alkyl isothiocyanates in dichloromethane to furnish the polymer-bound urea derivatives after 5 min of micro-wave irradiation (Scheme 7.75). After each step, the intermediates were purified by simple precipitation with diethyl ether and filtration, so as to remove by-products and unreacted substrates. Finally, traceless release of the desired compounds by cyclative cleavage was achieved under mild basic conditions within 5 min of micro-wave irradiation. The 1,3-disubstituted hydantoins were obtained in varying yields but high purity. [Pg.348]

In a recent study, the group of Moser has described the use of a polymer-bound borohydride in reductive aminations of tetrameric isoquinolines (Scheme 7.101) [122]. These tetrameric isoquinolines, which represented lead compounds in a search for antibacterial distamicyn A analogues, were prepared from the appropriate... [Pg.366]

Ketcha and Wilson reported the solid-phase version of the classic Nenitzescu indole synthesis in a process involving initial acetoacetylation of ArgoPore-NH2 resin with diketene to afford a polymer bound acetoacetamide <00TL6253>. Formation of the corresponding enaminone 102 via condensation with primary amines in the presence of trimethylorthoformate followed by addition of 1,4-benzoquinones 103 leads to formation of polymer bound 5-hydroxyindole-3-carboxamides 104 which could be cleaved from the resin using TFA yielding the indoles 105. [Pg.119]

In analogous fashion to isocyanate chemistry, isothiocyanates like 125 can be utilized to produce the corresponding quinazoline-2-thioxo-4-ones. Makino and co-workers reported the solid phase synthesis of quinazoline derivatives 126 through the reaction of polymer-bound primary amines 124 with isothiocyanates 125 <00TL8333>. [Pg.273]

Imanaka—heterogenization of Rh complexes. In 1991, Imanaka and coworkers124 reported the heterogenization of Rh complexes by binding them to aminated polymers. As discussed previously, these findings led to fruitful research by Ford, Pardey, and others. The isolated polymer-bound Rh carbonyl anion complex was found to be reusable for reactions such as water-gas shift and reduction of nitro compounds. The polymer-bound Rh complexes were characterized by infrared spectroscopy. Water-gas shift activity (80 mol H2 per mol Rh6(CO)i6 in 24 hours) was recorded using the Rh complexes at 100 °C with 0.92 atm of CO, 2.16 ml H20, 0.05 mmol Rh6(CO)16, aminated polystyrene, 5.0 mmol of N, 5.56 ml ethoxyethanol and reduction of nitro-compounds (e.g., aliphatic nitro compounds to nitriles, oximes to nitriles, hydroxylamines to nitriles, and N-oxides to amines) occurred at 40 °C. [Pg.170]

Our first synthesis of a polymer-bound anomeric amine involved a trisaccharide model system (Scheme 2.20).45 Disaccharide 66 was extended in standard fashion to trisaccharide 67 and fully protected to give 68. This latter compound was treated with anthracenesulfonamide and Jt.vy/u-coll )2C104 to form the intermediate 69. Reaction of the iodosulfonamide 69 with tetra-n-butylammonium azide followed by acetylation provided the anomeric azide 70. [Pg.32]

In another approach, a polymer-bound TEMPO-species, referred to as PIPO (polyamine immobilized piperidinyl oxyl), was derived by oxidation of commercially available Chimasorb 944, an oligomeric sterically hindered amine. Together with bleach as co-oxidant PIPO (12) afforded aldehydes and ketones in short reaction times and with yields from 80 to > 99% (Scheme 4.6) [70]. [Pg.212]

The successful assembly of organic compounds on a solid support represents only part of the challenge in SPOS. After completion of synthetic sequence, the compounds must be cleaved from linkers attached to polymer by a chemical or photochemical reaction, for example, treatment of a polymer-bound compound with acids, bases, nucleophiles, redox reagents, and even photons. Acid-labile linker and amine-cleavable Marshall linker are two major classes of hnkers used in combinatorial synthesis. [Pg.516]

To examine the second way of binding the chloro ester 1-Me to a polymer as in 268 (Fig. 12), the TentaGel-S-COOH resin 279 which contains a succinyl linker, was esterified with the 2 -(4-hydroxybutyl)-substituted chloro ester 280 (prepared by debenzylation of compound 2l-Me) (Scheme 81) [11b]. Only the Michael addition of secondary amines onto 281 and the removal of the adducts 283 from the resin has been probed so far, any further transformations of polymer-bound compounds 281 need yet to be developed. [Pg.218]


See other pages where Amine polymer bound is mentioned: [Pg.108]    [Pg.108]    [Pg.327]    [Pg.531]    [Pg.360]    [Pg.175]    [Pg.766]    [Pg.781]    [Pg.317]    [Pg.537]    [Pg.343]    [Pg.372]    [Pg.67]    [Pg.171]    [Pg.196]    [Pg.36]    [Pg.21]    [Pg.264]    [Pg.83]    [Pg.90]    [Pg.99]    [Pg.107]    [Pg.114]    [Pg.178]   
See also in sourсe #XX -- [ Pg.150 , Pg.155 , Pg.160 ]




SEARCH



Polymer-bound

© 2024 chempedia.info