Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ambient conditions, effect

Bussman, W., and Baukal, C. "Ambient Condition Effects on Process Heater Emissions." Proceedings of the International Mechanical Engineering Congress Exhibition, Paper IMECE2008-68284, Boston, MA, November 2008. [Pg.40]

Effects of temperature and relative humidity on the amount of water vapor in air at an atmospheric pressure of 14.7 psia (101 kPa). (From Bussman, W., and Baukal, C., "Ambient Condition Effects on Process Heater Emissions," Proceedings of the Inti Mechanical Engineering Congress Exhibition, Paper IMECE2008-68284, Boston, MA, November 2008. With permission.)... [Pg.154]

The primary aim is to introduce the current concepts used to interpret the properties of homogeneous, optically transparent, self-assembling aqueous solutions of small molecule surfactants that form into association colloids composed of charged or uncharged surfactants into micelles, miaoemul-sions, vesicles, or other mesophases. Pseudophase models are used to interpret chemical reactivity in surfactant solutions. Large surface-active molecules such as proteins, starches, and polymers are not considered. Much of the information is on surfactant solutions at room temperature and atmospheric pressure because most of the important properties, concepts, and unanswered questions can be developed at ambient conditions. Effects of additives such as salts, alcohols, and oils, and temperature are introduced briefly. Many introductory books include substantial sections on surfactant self-assembly. " Current research on a variety of topics is periodically reviewed in Current Opinion in Colloid and Interface Science. [Pg.174]

Boring E, Geletii YV, HiH CL. Catalytic aerobic oxidation of 2-chloroethyl ethylsullide, a mustard simulant, under ambient conditions effect of solvents, ligands, and transition metals on reactivity. J Mol Cat A Chem 2001 176(1—2) 49-63. [Pg.107]

Because pulp bleaching agents are, for the most part, reactive oxidising agents, appropriate precautions must be taken in their handling and use. For example, it is important to ensure that the threshold limit values (TLV) (20) in Table 2 are not exceeded in the workplace air. These are airborne concentrations in either parts per million by volume under standard ambient conditions or mg per cubic meter of air. They "represent conditions under which it is beUeved that nearly all workers may be repeatedly exposed, day after day, without adverse effect" (20). TWA refers to a time-weighted average for an 8-h workday STEL is a short-term exposure limit or maximum allowable concentration to which workers can be continuously exposed for 15 minutes. [Pg.158]

The most commercially important application that takes advantage of the pyroelectric effect ia polycrystalline ceramics is iafrared detection, especially for wavelengths ia excess of 2.5 p.m. AppHcations range from radiometry and surveillance to thermal imaging, and pyroelectric materials work under ambient conditions, unlike photon detectors, which require cooling. [Pg.344]

Acute and Chronic Toxicity. Although chromium displays nine oxidation states, the low oxidation state compounds, -II to I, all require Special conditions for existence and have very short lifetimes in a normal environment. This is also tme for most organ ochromium compounds, ie, compounds containing Cr—C bonds. Chromium compounds that exhibit stabiUty under the usual ambient conditions are limited to oxidation states II, III, IV, V, and VI. Only Cr(III) and Cr(VI) compounds are produced in large quantities and are accessible to most of the population. Therefore, the toxicology of chromium compounds has been historically limited to these two states, and virtually all of the available information is about compounds of Cr(III) and/or Cr(VI) (59,104). However, there is some indication that Cr(V) may play a role in chromium toxicity (59,105—107). Reference 104 provides an overview and summary of the environmental, biological, and medical effects of chromium and chromium compounds as of the late 1980s. [Pg.141]

Minimum Fluidizing Velocity U,nj, the minimum fluidizing velocity, is frequently used in fluid-bed calculations and in quantifying one of the particle properties. This parameter is best measured in small-scale equipment at ambient conditions. The correlation by Wen audYu [A.l.Ch.E.j., 610-612 (1966)] given below can then be used to back calculate d. This gives a particle size that takes into account effects of size distribution and sphericity. The correlation can then be used to estimate U, at process conditions, if U,nj cannot be determined experimentally, use the expression below directly. [Pg.1562]

Has the unit operation effectiveness changed due to the input conditions, ambient conditions, or the state of the equipment ... [Pg.2576]

The plant overall power and the heat rate are very dependent on the inlet conditions as seen in Figure 20-8, which is based on a typical gas turbine plant. The effect of temperature is the most critical component in the ambient condition variations of temperature, pressure, and humidity. [Pg.707]

In view of the above adverse effects a safety factor should be applied where flammability is assessed using flash point. For pure liquids in containers the vapor should be considered potentially flammable if the liquid temperature is upward of at least 5°C below the reported flash point. For mixtures whose composition is less certain, such as petroleum mixtures, the safety factor should be about 15°C relative to the flash point [55]. Where combinations of adverse effects are identified the safety factors should be increased accordingly. A simple but very conservative approach is to assume that all liquids having a flash point <141°F may produce a flammable atmosphere under some ambient conditions, even where no mist or froth production is involved. A more practical approach is to assume that liquids handled in air at least 5-15°C below their closed cup flash points will not present ignition risks unless... [Pg.85]

It is important to note that even if the blowdown is effective in disengaging liquid and vapor, further condensation could occur downstream especially if the vented vapor exits the drum at a temperature above ambient conditions. A proportion of such condensible materials in the blowdown drum vapor release may condense as a result of cooling in the flare header and contact with seal water, and then disengage in the flare seal drum while condensible vapors which are not condensed out at this stage may condense in the flare stack or its inlet line, thus creating the potential for hazardous fallout of burning liquid from the flare. Condensed hydrocarbon in the seal drum can be entrained out with the... [Pg.225]


See other pages where Ambient conditions, effect is mentioned: [Pg.141]    [Pg.152]    [Pg.158]    [Pg.141]    [Pg.152]    [Pg.158]    [Pg.1696]    [Pg.4]    [Pg.373]    [Pg.132]    [Pg.28]    [Pg.503]    [Pg.516]    [Pg.351]    [Pg.139]    [Pg.187]    [Pg.83]    [Pg.293]    [Pg.319]    [Pg.145]    [Pg.364]    [Pg.482]    [Pg.442]    [Pg.178]    [Pg.930]   


SEARCH



Ambient

Ambient conditions (

Condition Effects

Effectiveness conditions

© 2024 chempedia.info