Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activity coefficient-models equilibrium

Thermodynamic models are widely used for the calculation of equilibrium and thermophysical properties of fluid mixtures. Two types of such models will be examined cubic equations of state and activity coefficient models. In this chapter cubic equations of state models are used. Volumetric equations of state (EoS) are employed for the calculation of fluid phase equilibrium and thermophysical properties required in the design of processes involving non-ideal fluid mixtures in the oil and gas and chemical industries. It is well known that the introduction of empirical parameters in equation of state mixing rules enhances the ability of a given EoS as a tool for process design although the number of interaction parameters should be as small as possible. In general, the phase equilibrium calculations with an EoS are very sensitive to the values of the binary interaction parameters. [Pg.226]

Activity coefficient models offer an alternative approach to equations of state for the calculation of fugacities in liquid solutions (Prausnitz ct al. 1986 Tas-sios, 1993). These models are also mechanistic and contain adjustable parameters to enhance their correlational ability. The parameters are estimated by matching the thermodynamic model to available equilibrium data. In this chapter, vve consider the estimation of parameters in activity coefficient models for electrolyte and non-electrolyte solutions. [Pg.268]

Several activity coefficient models are available for industrial use. They are presented extensively in the thermodynamics literature (Prausnitz et al., 1986). Here we will give the equations for the activity coefficients of each component in a binary mixture. These equations can be used to regress binary parameters from binary experimental vapor-liquid equilibrium data. [Pg.275]

This expression provides the basis for vapor-liquid equilibrium calculations on the basis of liquid-phase activity coefficient models. In Equation 4.27, thermodynamic models are required for cf>y (from an equation of state) and y, from a liquid-phase activity coefficient model. Some examples will be given later. At moderate pressures, the vapor phase becomes ideal, as discussed previously, and fj = 1. For... [Pg.60]

VAPOR-LIQUID EQUILIBRIUM BASED ON ACTIVITY COEFFICIENT MODELS... [Pg.62]

Although the methods developed here can be used to predict liquid-liquid equilibrium, the predictions will only be as good as the coefficients used in the activity coefficient model. Such predictions can be critical when designing liquid-liquid separation systems. When predicting liquid-liquid equilibrium, it is always better to use coefficients correlated from liquid-liquid equilibrium data, rather than coefficients based on the correlation of vapor-liquid equilibrium data. Equally well, when predicting vapor-liquid equilibrium, it is always better to use coefficients correlated to vapor-liquid equilibrium data, rather than coefficients based on the correlation of liquid-liquid equilibrium data. Also, when calculating liquid-liquid equilibrium with multicomponent systems, it is better to use multicomponent experimental data, rather than binary data. [Pg.72]

Prediction of liquid-liquid equilibrium also requires an activity coefficient model. The choice of models of liquid-liquid equilibrium is more restricted than that for vapor-liquid equilibrium, and predictions are particularly sensitive to the model parameters used. [Pg.74]

The non-random two-liquid segment activity coefficient model is a recent development of Chen and Song at Aspen Technology, Inc., [1], It is derived from the polymer NRTL model of Chen [26], which in turn is developed from the original NRTL model of Renon and Prausznitz [27]. The NRTL-SAC model is proposed in support of pharmaceutical and fine chemicals process and product design, for the qualitative tasks of solvent selection and the first approximation of phase equilibrium behavior in vapour liquid and liquid systems, where dissolved or solid phase pharmaceutical solutes are present. The application of NRTL-SAC is demonstrated here with a case study on the active pharmaceutical intermediate Cimetidine, and the design of a suitable crystallization process. [Pg.53]

For the purpose of this case study we will select Isopropyl alcohol as the crystallization solvent and assume that the NRTL-SAC solubility curve for Form A has been confirmed as reasonably accurate in the laboratory. If experimental solubility data is measured in IPA then it can be fitted to a more accurate (but non predictive) thermodynamic model such as NRTL or UNIQUAC at this point, taking care with analysis of the solid phase in equilibrium. As the activity coefficient model only relates to species in the liquid phase we can use the same model with each different set of AHm and Tm data to calculate the solubility of the other polymorphs of Cimetidine, as shown in Figure 21. True polymorphs only differ from each other in the solid phase and are otherwise chemically identical. [Pg.73]

Two New Activity Coefficient Models for the Vapor-Liquid Equilibrium of Electrolyte Systems... [Pg.61]

Two activity coefficient models have been developed for vapor-liquid equilibrium of electrolyte systems. The first model is an extension of the Pitzer equation and is applicable to aqueous electrolyte systems containing any number of molecular and ionic solutes. The validity of the model has been shown by data correlation studies on three aqueous electrolyte systems of industrial interest. The second model is based on the local composition concept and is designed to be applicable to all kinds of electrolyte systems. Preliminary data correlation results on many binary and ternary electrolyte systems suggest the validity of the local composition model. [Pg.86]

The first method, which is the more flexible, is to use an activity coefficient model, which is common at moderate or low pressures where the liquid phase is incompressible. At high pressures or when any component is close to or above the critical point (above which the liquid and gas phases become indistinguishable), one can use an equation of state that takes into account the effect of pressure. Two phases, denoted a and P, are in equilibrium when the fugacity / (for an ideal gas the fungacity is equal to the pressure) is the same for each component i in both phases ... [Pg.423]

Discusses structure and physicochemical properties, activity coefficients, phase equilibrium with other liquids, and modeling... [Pg.422]

Several reviews have been published about ILs and analytical chemistry, fortunately now we have main players in this field in one place who kindly agreed f o provide f heir contributions. This book is an attempt to collect experience and knowledge about the use of ILs in different areas of analytical chemistry such as separation science, spectroscopy, and mass spectrometry that could lead others to new ideas and discoveries. In addition, there are chapters providing information of studies on determination of physicochemical properties, fhermophysical properties and activity coefficients, phase equilibrium with other liquids, and discussion about modeling, which are essential to know beforehand, also for wider applications in analytical chemistry. [Pg.450]

Henry s lxm> Constant Henry s law for dilute concentrations of contaminants in water is often appropriate for modeling vapor—liquid equilibrium (VLE) behavior (47). At very low concentrations, a chemical s Henry s constant is equal to the product of its activity coefficient and vapor pressure (3,10,48). Activity coefficient models can provide estimated values of infinite dilution activity coefficients for calculating Henry s constants as a function of... [Pg.237]

The same reference (standard) state, f is chosen for the two phases, so that it cancels on both sides of equation 39. The products stffi and y" are referred to as activities. Because equation 39 holds for each component of a liquid—liquid system, it is possible to predict liquid—liquid phase splitting when the activity coefficients of the individual components in a multicomponent system are known. These values can come from vapor—liquid equilibrium experiments or from prediction methods developed for phase-equilibrium problems (4,5,10). Some binary systems can be modeled satisfactorily in this manner, but only rough estimations appear to be possible for multicomponent systems because activity coefficient models are not yet sufficiendy developed in this area. [Pg.238]

Once the composition of each equilibrium phase is known, infinite dilution activity coefficients for a third component in each phase can then be calculated. The octanol—water partition coefficient is direcdy proportional to the ratio of the infinite dilution activity coefficients for a third component distributed between the water-rich and octanol-rich phases (5,24). The primary drawback to the activity coefficient approach to Kqw estimation is the difficulty of the calculations involved, particulady when the activity coefficient model is complex. [Pg.238]

The LCM is a semi-theoretical model with a minimum number of adjustable parameters and is based on the Non-Random Two Liquid (NRTL) model for nonelectrolytes (20). The LCM does not have the inherent drawbacks of virial-expansion type equations as the modified Pitzer, and it proved to be more accurate than the Bromley method. Some advantages of the LCM are that the binary parameters are well defined, have weak temperature dependence, and can be regressed from various thermodynamic data sources. Additionally, the LCM does not require ion-pair equilibria to correct for activity coefficient prediction at higher ionic strengths. Thus, the LCM avoids defining, and ultimately solving, ion-pair activity coefficients and equilibrium expressions necessary in the Davies technique. Overall, the LCM appears to be the most suitable activity coefficient technique for aqueous solutions used in FGD hence, a data base and methods to use the LCM were developed. [Pg.230]

In order to correlate the results obtained, a modified SRK equation of state with Huron-Vidal mixing rules was used. Details about the model are reported in the paper by Soave et al. [16]. This approach is particularly adequated when experimental values of the critical temperature and pressure are not available as it was the case for limonene and linalool. Note that the flexibility of the thermodynamic model to reproduce high-pressure vapor-liquid equilibrium data is ensured by the use of the Huron-Vidal mixing rules and a NRTL activity coefficient model at infinite pressures. Calculation results are reported as continuous curves in figure 2 for the C02-linalool system and in figure 3 for C02-limonene. Note that the same parameters values were used to correlated the data of C02-limonene at 45, 50 e 60 °C. [Pg.415]

Related Calculations. This illustration outlines the procedure for obtaining coefficients of a liquid-phase activity-coefficient model from mutual solubility data of partially miscible systems. Use of such models to calculate activity coefficients and to make phase-equilibrium calculations is discussed in Section 3. This leads to estimates of phase compositions in liquid-liquid systems from limited experimental data. At ordinary temperature and pressure, it is simple to obtain experimentally the composition of two coexisting phases, and the technical literature is rich in experimental results for a large variety of binary and ternary systems near 25°C (77°F) and atmospheric pressure. Example 1.21 shows how to apply the same procedure with vapor-liquid equilibrium data. [Pg.47]

Next, we specify the x, between 0 and 1, and estimate the total pressure P and yx from Eq. (1.193) to prepare the total pressure and equilibrium compositions shown in Table 1.10. In Figure 1.9, we can compare both the Tyx and Pyx diagrams obtained from Raoult s law and the NRTL model using the Aspen Plus simulator. As we see, ideal behavior does not represent the actual behavior of the acetone-water mixture, and hence we should take into account the nonideal behavior of the liquid phase by using an activity coefficient model. [Pg.40]

Example 4.32 Column grand composite curves in methanol plant Table 4.16 describes the existing base case operations for columns 1 and 2 of the methanol plant obtained from the converged simulations using the RKS equation of state to estimate the vapor properties. The activity coefficient model, NRTL, and Henry components method are used for predicting the equilibrium and liquid properties. [Pg.263]

The extension of ideal phase analysis of the Maxwell-Stefan equations to nonideal liquid mixtures requires the sufficiently accurate estimation of composition-dependent mutual diffusion coefficients and the matrix of thermodynamic factors. However, experimental data on mutual diffusion coefficients are rare, and prediction methods are satisfactory only for certain types of liquid mixtures. The thermodynamic factor may be calculated from activity coefficient models such as NRTL or UNIQUAC, which have adjustable parameters estimated from experimental phase equilibrium data. The group contribution method of UNIFAC may also be helpful, as it has a readily available parameter table consisting of mam7 species. If, however, reliable data are not available, then the averaged values of the generalized Maxwell-Stefan diffusion coefficients and the matrix of thermodynamic factors are calculated at some mean composition between x0i and xzi. Hence, the matrix of zero flux mass transfer coefficients [k ] is estimated by... [Pg.335]

Equilibrium Data Collection in the Chemistry Data Series published by DECHEMA. VLE calculations are performed assuming an ideal vapor phase and a standard Wilson liquid activity coefficient model. This takes the form... [Pg.325]

The Kvalues (vapor-liquid equilibrium ratios) in Equation (13-123) are estimated from the same equation-of-state or activity-coefficient models that are used with equilibrium-stage models. Tray or packed-section pressure drops are estimated from suitable correlations of the type discussed by Kister (op. cit.). [Pg.1115]

The gas phase of the system will mainly consist of H20(g), NHj(g), and C02(g). In order to perform vapor-liquid equilibrium calculations with an activity coefficient model at pressures higher than ambient pressure, the activity coefficient model can be combined with an equation of state for the gases. Usually, there is no need for binary interaction parameters in the equation of state as gas phase fiigacities are only slightly dependent on these binary interaction parameters. For the equilibrium between ammonia in the liquid phase and ammonia in the vapor phase. Equation (13) gives ... [Pg.223]

Solid-liquid equilibrium phase diagrams play an important role in the design of industrial crystallization processes. The calculation of phase diagrams can be used to validate the activity coefficient model used for process simulation. [Pg.224]

For the analytical equations, there are two methods to compute the vapour-liquid equilibrium for systems. The equation of state method (also known as the direct or phi-phi method) uses an equation of state to describe both the liquid and vapour phase properties, whereas the activity coefficient method (also known as the gamma-phi approach) describes the liquid phase via an activity coefficient model and the vapour phase via an equation of state. Recently, there have also been modified equation of state methods that have an activity coefficient model built into the mixing mles. These methods can be both correlative and predictive. The predictive methods rely on the use of group contribution methods for the activity coefficient models such as UNIFAC and ASOG. Recently, there have also been attempts to develop group contribution methods for the equation of state method, e.g. PRSK. " For a detailed history on the development of equations of state and their applications, as well as activity coefficient models, refer to Wei and Sadus, Sandler and Walas. ... [Pg.270]

The calculations reported in this paper and a related series of publications indicate that it is now quite feasible to obtain reasonably accurate results for phase equilibria in simple fluid mixtures directly from molecular simulation. What is the possible value of such results Clearly, because of the lack of accurate intermolecular potentials optimized for phase equilibrium calculations for most systems of practical interest, the immediate application of molecular simulation techniques as a replacement of the established modelling methods is not possible (or even desirable). For obtaining accurate results, the intermolecular potential parameters must be fitted to experimental results, in much the same way as parameters for equation-of-state or activity coefficient models. This conclusion is supported by other molecular-simulation based predictions of phase equilibria in similar systems (6). However, there is an important difference between the potential parameters in molecular simulation methods and fitted parameters of thermodynamic models. Molecular simulation calculations, such as the ones reported here, involve no approximations beyond those inherent in the potential models. The calculated behavior of a system with assumed intermolecular potentials is exact for any conditions of pressure, temperature or composition. Thus, if a good potential model for a component can be developed, it can be reliably used for predictions in the absence of experimental information. [Pg.50]

As in Example 4, the EXTRACT block in the Aspen Plus process simulation program (version 12.1) is used to model this problem, but any of a number of process simulation programs such as mentioned earlier may be used for this purpose. The first task is to obtain an accurate fit of the liquid-liquid equilibrium (LLE) data with an appropriate model, realizing that liquid-liquid extraction simulations are very sensitive to the quality of the LLE data fit. The NRTL liquid activity-coefficient model [Eq. (15-27)] is utilized for this purpose since it can represent a wide range of LLE systems accurately. The regression of the NRTL binary interaction parameters is performed with the Aspen Plus Data Regression System (DRS) to ensure that the resulting parameters are consistent with the form of the NRTL model equations used within Aspen Plus. [Pg.1742]

Figure 4.3. (a) Thermodynamic factor for the system ethanol-water at 40°C obtained from different activity coefficient models. Parameters from Gmehling and Onken (1977ff Vol. I/la p. 133). (h) Thermodynamic factor for the system ethanol-water at 50°C obtained using the NRTL equation using parameters fitted to isothermal vapor-liquid equilibrium data. Parameters from Gmehling and Onken... [Pg.72]

It should be noted that the Maxwell-Stefan D calculated from Eq. 4.1.5 can be quite sensitive to the model used to compute T, an observation first made by Dullien (1971). One of the reasons for this sensitivity is that E involves the first derivative of the activity coefficient with respect to composition. Activity coefficient model parameters are fitted to vapor-liquid equilibrium (VLE) data (see, e.g., Prausnitz et al., 1980 Gmehling and Onken, 1977). Several models may provide estimates of In % that give equally good fits of the vapor-liquid equilibrium data but that does not mean that the first derivatives of In % (and, hence, E) will be all that close. To illustrate this fact we have calculated the thermodynamic factor, E, for the system ethanol-water with several different models of In %. The results are shown in Figure 4.3 a). The interaction parameters used in these calculations were fitted to one set of VLE data as identified in the figure caption. Similar illustrations for other systems are provided by Taylor and Kooijman (1991). [Pg.73]


See other pages where Activity coefficient-models equilibrium is mentioned: [Pg.1294]    [Pg.1313]    [Pg.74]    [Pg.15]    [Pg.139]    [Pg.1]    [Pg.237]    [Pg.7]    [Pg.68]    [Pg.87]    [Pg.1117]    [Pg.1136]    [Pg.2301]    [Pg.1502]    [Pg.1521]    [Pg.1]   
See also in sourсe #XX -- [ Pg.626 ]




SEARCH



Activation model

Active model

Activity coefficients model

Activity model

Equilibrium activity

Equilibrium activity coefficient

Equilibrium modeling

Fluid phase equilibrium activity coefficient models

Models coefficients

Vapor-Liquid Equilibrium Based on Activity Coefficient Models

Vapor-liquid equilibrium activity coefficient models

© 2024 chempedia.info