Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coefficient liquid phase activity

Yi liquid-phase activity coefficient, polar phase... [Pg.101]

Roper, V. Kohayashi, R. Apparatus and procedure to measure binary total pressure at high temperature fluorene - phenanthrene vapor-liquid equilibria and data reduction by the four-suffix Margules model to obtain infinite-dilution activity coefficients Fluid Phase Equilib. 1989,47, 273-293... [Pg.525]

Liquid-state activity-coefficient models, phase equilibria simulation, 448-452 Liquid-state fugacities, phase equilibria simulation, 446 Loans, 260... [Pg.988]

H-H ) - molar enthalpy departure frm the ideal gas state AHmix molar liquid heat of solution k - liquid thermal conductivity K - vapor-liquid equilibrium ratio P - absolute pressure Pref reference pressure R - gas constant T - absolute temperature - liquid molar volume - liquid partial molar volume X - mole fraction in liquid phase y - mole fraction in vapor phase relative volatility Y - liquid activity coefficient liquid viscosity... [Pg.85]

In vapor-liquid equilibria, it is relatively easy to start the iteration because assumption of ideal behavior (Raoult s law) provides a reasonable zeroth approximation. By contrast, there is no obvious corresponding method to start the iteration calculation for liquid-liquid equilibria. Further, when two liquid phases are present, we must calculate for each component activity coefficients in two phases since these are often strongly nonlinear functions of compositions, liquid-liquid equilibrium calculations are highly sensitive to small changes in composition. In vapor-liquid equilibria at modest pressures, this sensitivity is lower because vapor-phase fugacity coefficients are usually close to unity and only weak functions of composition. For liquid-liquid equilibria, it is therefore more difficult to construct a numerical iteration procedure that converges both rapidly and consistently. [Pg.4]

The activity coefficient y relates the liquid-phase fugacity... [Pg.14]

Figure 4-9. Vapor-liquid equilibria for a binary system where one component dimerizes in the vapor phase. Activity coefficients show only small deviations from liquid-phase ideality. Figure 4-9. Vapor-liquid equilibria for a binary system where one component dimerizes in the vapor phase. Activity coefficients show only small deviations from liquid-phase ideality.
As discussed in Chapter 2, for noncondensable components, the unsymmetric convention is used to normalize activity coefficients. For a noncondensable component i in a multicomponent mixture, we write the fugacity in the liquid phase... [Pg.55]

To illustrate calculations for a binary system containing a supercritical, condensable component. Figure 12 shows isobaric equilibria for ethane-n-heptane. Using the virial equation for vapor-phase fugacity coefficients, and the UNIQUAC equation for liquid-phase activity coefficients, calculated results give an excellent representation of the data of Kay (1938). In this case,the total pressure is not large and therefore, the mixture is at all times remote from critical conditions. For this binary system, the particular method of calculation used here would not be successful at appreciably higher pressures. [Pg.59]

Table 3 shows results obtained from a five-component, isothermal flash calculation. In this system there are two condensable components (acetone and benzene) and three noncondensable components (hydrogen, carbon monoxide, and methane). Henry s constants for each of the noncondensables were obtained from Equations (18-22) the simplifying assumption for dilute solutions [Equation (17)] was also used for each of the noncondensables. Activity coefficients for both condensable components were calculated with the UNIQUAC equation. For that calculation, all liquid-phase composition variables are on a solute-free basis the only required binary parameters are those for the acetone-benzene system. While no experimental data are available for comparison, the calculated results are probably reliable because all simplifying assumptions are reasonable the... [Pg.61]

Subroutine ACTIV2. This subroutine calculates the activity coefficients using one of the liquid-phase equations discussed in the previous section. [Pg.220]

The computer subroutines for calculation of vapor-phase and liquid-phase fugacity (activity) coefficients, reference fugac-ities, and molar enthalpies, as well as vapor-liquid and liquid-liquid equilibrium ratios, are described and listed in this Appendix. These are source routines written in American National Standard FORTRAN (FORTRAN IV), ANSI X3.9-1978, and, as such, should be compatible with most computer systems with FORTRAN IV compilers. Approximate storage requirements and CDC 6400 execution times for these subroutines are given in Appendix J. [Pg.289]

GAMMA CALCULATES LIQUID PHASE ACTIVITY COEFFICIENTS, GAM, FOR ALL N... [Pg.311]

Gamma/Phi Approach For many XT E systems of interest the pressure is low enough that a relatively simple equation of state, such as the two-term virial equation, is satisfactoiy for the vapor phase. Liquid-phase behavior, on the other hand, may be conveniently described by an equation for the excess Gibbs energy, from which activity coefficients are derived. The fugacity of species i in the liquid phase is then given by Eq. (4-102), written... [Pg.535]

When Eq. (4-282) is applied to XT E for which the vapor phase is an ideal gas and the liquid phase is an ideal solution, it reduces to a veiy simple expression. For ideal gases, fugacity coefficients and are unity, and the right-hand side of Eq. (4-283) reduces to the Poynting factor. For the systems of interest here this factor is always veiy close to unity, and for practical purposes <1 = 1. For ideal solutions, the activity coefficients are also unity. Equation (4-282) therefore reduces to... [Pg.536]

The binary interaction parameters are evaluated from liqiiid-phase correlations for binaiy systems. The most satisfactoiy procedure is to apply at infinite dilution the relation between a liquid-phase activity coefficient and its underlying fugacity coefficients, Rearrangement of the logarithmic form yields... [Pg.539]

Outlined below are the steps required for of a X T.E calciilation of vapor-phase composition and pressure, given the liquid-phase composition and temperature. A choice must be made of an equation of state. Only the Soave/Redlich/Kwong and Peng/Robinson equations, as represented by Eqs. (4-230) and (4-231), are considered here. These two equations usually give comparable results. A choice must also be made of a two-parameter correlating expression to represent the liquid-phase composition dependence of for each pq binaiy. The Wilson, NRTL (with a fixed), and UNIQUAC equations are of general applicabihty for binary systems, the Margules and van Laar equations may also be used. The equation selected depends on evidence of its suitability to the particular system treated. Reasonable estimates of the parameters in the equation must also be known at the temperature of interest. These parameters are directly related to infinite-dilution values of the activity coefficients for each pq binaiy. [Pg.539]

For liquid-phase reaclions, Eq. (4-342) is modified by introduction of the activity coefficient, Y where x, is the liquid-phase mole... [Pg.542]

Table 13-1, based on the binary-system activity-coefficient-eqnation forms given in Table 13-3. Consistent Antoine vapor-pressure constants and liquid molar volumes are listed in Table 13-4. The Wilson equation is particularly useful for systems that are highly nonideal but do not undergo phase splitting, as exemplified by the ethanol-hexane system, whose activity coefficients are snown in Fig. 13-20. For systems such as this, in which activity coefficients in dilute regions may... Table 13-1, based on the binary-system activity-coefficient-eqnation forms given in Table 13-3. Consistent Antoine vapor-pressure constants and liquid molar volumes are listed in Table 13-4. The Wilson equation is particularly useful for systems that are highly nonideal but do not undergo phase splitting, as exemplified by the ethanol-hexane system, whose activity coefficients are snown in Fig. 13-20. For systems such as this, in which activity coefficients in dilute regions may...
These equations when combined with Eq. (13-5) lead to the following equations for liquid-phase activity coefficients in terms of measurable quantities ... [Pg.1258]

Example 8 Calculation of Rate-Based Distillation The separation of 655 lb mol/h of a bubble-point mixture of 16 mol % toluene, 9.5 mol % methanol, 53.3 mol % styrene, and 21.2 mol % ethylbenzene is to be earned out in a 9.84-ft diameter sieve-tray column having 40 sieve trays with 2-inch high weirs and on 24-inch tray spacing. The column is equipped with a total condenser and a partial reboiler. The feed wiU enter the column on the 21st tray from the top, where the column pressure will be 93 kPa, The bottom-tray pressure is 101 kPa and the top-tray pressure is 86 kPa. The distillate rate wiU be set at 167 lb mol/h in an attempt to obtain a sharp separation between toluene-methanol, which will tend to accumulate in the distillate, and styrene and ethylbenzene. A reflux ratio of 4.8 wiU be used. Plug flow of vapor and complete mixing of liquid wiU be assumed on each tray. K values will be computed from the UNIFAC activity-coefficient method and the Chan-Fair correlation will be used to estimate mass-transfer coefficients. Predict, with a rate-based model, the separation that will be achieved and back-calciilate from the computed tray compositions, the component vapor-phase Miirphree-tray efficiencies. [Pg.1292]

In systems that exhibit ideal liquid-phase behavior, the activity coefficients, Yi, are equal to unity and Eq. (13-124) simplifies to Raoult s law. For nonideal hquid-phase behavior, a system is said to show negative deviations from Raoult s law if Y < 1, and conversely, positive deviations from Raoult s law if Y > 1- In sufficiently nonide systems, the deviations may be so large the temperature-composition phase diagrams exhibit extrema, as own in each of the three parts of Fig. 13-57. At such maxima or minima, the equihbrium vapor and liqmd compositions are identical. Thus,... [Pg.1293]

Extractive distillation works by the exploitation of the selective solvent-induced enhancements or moderations of the liquid-phase nonidealities of the components to be separated. The solvent selectively alters the activity coefficients of the components being separated. To do this, a high concentration of solvent is necessaiy. Several features are essential ... [Pg.1313]

Since activity coefficients have a strong dependence on composition, the effect of the solvent on the activity coefficients is generally more pronounced. However, the magnitude and direc tion of change is highly dependent on the solvent concentration, as well as the liquid-phase interactions between the key components and the solvent. The solvent acts to lessen the nonideahties of the key component whose liquid-phase behavior is similar to the solvent, while enhancing the nonideal behavior of the dissimilar key. [Pg.1314]

The solvent and the key component that show most similar liquid-phase behavior tend to exhibit little molecular interactions. These components form an ideal or nearly ideal liquid solution. The ac tivity coefficient of this key approaches unity, or may even show negative deviations from Raoult s law if solvating or complexing interactions occur. On the other hand, the dissimilar key and the solvent demonstrate unfavorable molecular interactions, and the activity coefficient of this key increases. The positive deviations from Raoult s law are further enhanced by the diluting effect of the high-solvent concentration, and the value of the activity coefficient of this key may approach the infinite dilution value, often aveiy large number. [Pg.1314]

There are many types of phase diagrams in addition to the two cases presented here these are summarized in detail by Zief and Wilcox (op. cit., p. 21). Solid-liquid phase equilibria must be determined experimentally for most binaiy and multicomponent systems. Predictive methods are based mostly on ideal phase behavior and have limited accuracy near eutectics. A predic tive technique based on extracting liquid-phase activity coefficients from vapor-liquid equilib-... [Pg.1990]


See other pages where Coefficient liquid phase activity is mentioned: [Pg.92]    [Pg.219]    [Pg.6]    [Pg.61]    [Pg.111]    [Pg.153]    [Pg.153]    [Pg.262]    [Pg.541]    [Pg.1293]    [Pg.1294]    [Pg.1313]    [Pg.1360]    [Pg.1452]    [Pg.305]    [Pg.305]    [Pg.332]    [Pg.354]    [Pg.83]    [Pg.23]    [Pg.113]   
See also in sourсe #XX -- [ Pg.333 ]




SEARCH



Liquid activity

Liquid phase activity

Liquid phase coefficient

© 2024 chempedia.info