Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vapor-liquid equilibrium activity coefficient models

This expression provides the basis for vapor-liquid equilibrium calculations on the basis of liquid-phase activity coefficient models. In Equation 4.27, thermodynamic models are required for cf>y (from an equation of state) and y, from a liquid-phase activity coefficient model. Some examples will be given later. At moderate pressures, the vapor phase becomes ideal, as discussed previously, and fj = 1. For... [Pg.60]

Related Calculations. This illustration outlines the procedure for obtaining coefficients of a liquid-phase activity-coefficient model from mutual solubility data of partially miscible systems. Use of such models to calculate activity coefficients and to make phase-equilibrium calculations is discussed in Section 3. This leads to estimates of phase compositions in liquid-liquid systems from limited experimental data. At ordinary temperature and pressure, it is simple to obtain experimentally the composition of two coexisting phases, and the technical literature is rich in experimental results for a large variety of binary and ternary systems near 25°C (77°F) and atmospheric pressure. Example 1.21 shows how to apply the same procedure with vapor-liquid equilibrium data. [Pg.47]

Example 4.32 Column grand composite curves in methanol plant Table 4.16 describes the existing base case operations for columns 1 and 2 of the methanol plant obtained from the converged simulations using the RKS equation of state to estimate the vapor properties. The activity coefficient model, NRTL, and Henry components method are used for predicting the equilibrium and liquid properties. [Pg.263]

Several activity coefficient models are available for industrial use. They are presented extensively in the thermodynamics literature (Prausnitz et al., 1986). Here we will give the equations for the activity coefficients of each component in a binary mixture. These equations can be used to regress binary parameters from binary experimental vapor-liquid equilibrium data. [Pg.275]

VAPOR-LIQUID EQUILIBRIUM BASED ON ACTIVITY COEFFICIENT MODELS... [Pg.62]

These models are semiempirical and are based on the concept that intermolecular forces will cause nonrandom arrangement of molecules in the mixture. The models account for the arrangement of molecules of different sizes and the preferred orientation of molecules. In each case, the models are fitted to experimental binary vapor-liquid equilibrium data. This gives binary interaction parameters that can be used to predict multicomponent vapor-liquid equilibrium. In the case of the UNIQUAC equation, if experimentally determined vapor-liquid equilibrium data are not available, the Universal Quasi-chemical Functional Group Activity Coefficients (UNIFAC) method can be used to estimate UNIQUAC parameters from the molecular structures of the components in the mixture3. [Pg.62]

A model is needed to calculate liquid-liquid equilibrium for the activity coefficient from Equation 4.67. Both the NRTL and UNIQUAC equations can be used to predict liquid-liquid equilibrium. Note that the Wilson equation is not applicable to liquid-liquid equilibrium and, therefore, also not applicable to vapor-liquid-liquid equilibrium. Parameters from the NRTL and UNIQUAC equations can be correlated from vapor-liquid equilibrium data6 or liquid-liquid equilibrium data9,10. The UNIFAC method can be used to predict liquid-liquid equilibrium from the molecular structures of the components in the mixture3. [Pg.71]

Although the methods developed here can be used to predict liquid-liquid equilibrium, the predictions will only be as good as the coefficients used in the activity coefficient model. Such predictions can be critical when designing liquid-liquid separation systems. When predicting liquid-liquid equilibrium, it is always better to use coefficients correlated from liquid-liquid equilibrium data, rather than coefficients based on the correlation of vapor-liquid equilibrium data. Equally well, when predicting vapor-liquid equilibrium, it is always better to use coefficients correlated to vapor-liquid equilibrium data, rather than coefficients based on the correlation of liquid-liquid equilibrium data. Also, when calculating liquid-liquid equilibrium with multicomponent systems, it is better to use multicomponent experimental data, rather than binary data. [Pg.72]

Prediction of liquid-liquid equilibrium also requires an activity coefficient model. The choice of models of liquid-liquid equilibrium is more restricted than that for vapor-liquid equilibrium, and predictions are particularly sensitive to the model parameters used. [Pg.74]

Chapter 17 - Vapor-liquid equilibrium (VLE) data are important for designing and modeling of process equipments. Since it is not always possible to carry out experiments at all possible temperatures and pressures, generally thermodynamic models based on equations on state are used for estimation of VLE. In this paper, an alternate tool, i.e. the artificial neural network technique has been applied for estimation of VLE for the binary systems viz. tert-butanol+2-ethyl-l-hexanol and n-butanol+2-ethyl-l-hexanol. The temperature range in which these models are valid is 353.2-458.2K at atmospheric pressure. The average absolute deviation for the temperature output was in range 2-3.3% and for the activity coefficient was less than 0.009%. The results were then compared with experimental data. [Pg.15]

Two New Activity Coefficient Models for the Vapor-Liquid Equilibrium of Electrolyte Systems... [Pg.61]

A wide variety of data for mean ionic activity coefficients, osmotic coefficients, vapor pressure depression, and vapor-liquid equilibrium of binary and ternary electrolyte systems have been correlated successfully by the local composition model. Some results are shown in Table 1 to Table 10 and Figure 3 to Figure 7. In each case, the chemical equilibrium between the species has been ignored. That is, complete dissociation of strong electrolytes has been assumed. This assumption is not required by the local composition model but has been made here in order to simplify the systems treated. [Pg.75]

Two activity coefficient models have been developed for vapor-liquid equilibrium of electrolyte systems. The first model is an extension of the Pitzer equation and is applicable to aqueous electrolyte systems containing any number of molecular and ionic solutes. The validity of the model has been shown by data correlation studies on three aqueous electrolyte systems of industrial interest. The second model is based on the local composition concept and is designed to be applicable to all kinds of electrolyte systems. Preliminary data correlation results on many binary and ternary electrolyte systems suggest the validity of the local composition model. [Pg.86]

Henry s lxm> Constant Henry s law for dilute concentrations of contaminants in water is often appropriate for modeling vapor—liquid equilibrium (VLE) behavior (47). At very low concentrations, a chemical s Henry s constant is equal to the product of its activity coefficient and vapor pressure (3,10,48). Activity coefficient models can provide estimated values of infinite dilution activity coefficients for calculating Henry s constants as a function of... [Pg.237]

The same reference (standard) state, f is chosen for the two phases, so that it cancels on both sides of equation 39. The products stffi and y" are referred to as activities. Because equation 39 holds for each component of a liquid—liquid system, it is possible to predict liquid—liquid phase splitting when the activity coefficients of the individual components in a multicomponent system are known. These values can come from vapor—liquid equilibrium experiments or from prediction methods developed for phase-equilibrium problems (4,5,10). Some binary systems can be modeled satisfactorily in this manner, but only rough estimations appear to be possible for multicomponent systems because activity coefficient models are not yet sufficiendy developed in this area. [Pg.238]

Nitric acid is a strong electrolyte. Therefore, the solubilities of nitrogen oxides in water given in Ref. 191 and based on Henry s law are utilized and further corrected by using the method of van Krevelen and Hofhjzer (77) for electrolyte solutions. The chemical equilibrium is calculated in terms of liquid-phase activities. The local composition model of Engels (192), based on the UNIQUAC model, is used for the calculation of vapor pressures and activity coefficients of water and nitric acid. Multicomponent diffusion coefficients in the liquid phase are corrected for the nonideality, as suggested in Ref. 57. [Pg.381]

In order to correlate the results obtained, a modified SRK equation of state with Huron-Vidal mixing rules was used. Details about the model are reported in the paper by Soave et al. [16]. This approach is particularly adequated when experimental values of the critical temperature and pressure are not available as it was the case for limonene and linalool. Note that the flexibility of the thermodynamic model to reproduce high-pressure vapor-liquid equilibrium data is ensured by the use of the Huron-Vidal mixing rules and a NRTL activity coefficient model at infinite pressures. Calculation results are reported as continuous curves in figure 2 for the C02-linalool system and in figure 3 for C02-limonene. Note that the same parameters values were used to correlated the data of C02-limonene at 45, 50 e 60 °C. [Pg.415]

Experimental vapor-liquid-equilibrium data for benzene(l)/n-heptane(2) system at 80°C (176°F) are given in Table 1.8. Calculate the vapor compositions in equilibrium with the corresponding liquid compositions, using the Scatchard-Hildebrand regular-solution model for the liquid-phase activity coefficient, and compare the calculated results with the experimentally determined composition. Ignore the nonideality in the vapor phase. Also calculate the solubility parameters for benzene and n-heptane using heat-of-vaporization data. [Pg.41]

Equilibrium Data Collection in the Chemistry Data Series published by DECHEMA. VLE calculations are performed assuming an ideal vapor phase and a standard Wilson liquid activity coefficient model. This takes the form... [Pg.325]

The Kvalues (vapor-liquid equilibrium ratios) in Equation (13-123) are estimated from the same equation-of-state or activity-coefficient models that are used with equilibrium-stage models. Tray or packed-section pressure drops are estimated from suitable correlations of the type discussed by Kister (op. cit.). [Pg.1115]

A modified local composition (LC) expression is suggested, which accounts for the recent finding that the LC in an ideal binary mixture should be equal to the bulk composition only when the molar volumes of the two pure components are equal. However, the expressions available in the literature for the LCs in binary mixtures do not satisfy this requirement. Some LCs are examined including the popular LC-based NRTL model, to show how the above inconsistency can be eliminated. Further, the emphasis is on the modified NRTL model. The newly derived activity coefficient expressions have three adjustable parameters as the NRTL equations do, but contain, in addition, the ratio of the molar volumes of the pure components, a quantity that is usually available. The correlation capability of the modified activity coefficients was compared to the traditional NRTL equations for 42 vapor—liquid equilibrium data sets from two different kinds of binary mixtures (i) highly nonideal alcohol/water mixtures (33 sets), and (ii) mixtures formed of weakly interacting components, such as benzene, hexafiuorobenzene, toluene, and cyclohexane (9 sets). The new equations provided better performances in correlating the vapor pressure than the NRTL for 36 data sets, less well for 4 data sets, and equal performances for 2 data sets. Similar modifications can be applied to any phase equilibrium model based on the LC concept. [Pg.70]

The gas phase of the system will mainly consist of H20(g), NHj(g), and C02(g). In order to perform vapor-liquid equilibrium calculations with an activity coefficient model at pressures higher than ambient pressure, the activity coefficient model can be combined with an equation of state for the gases. Usually, there is no need for binary interaction parameters in the equation of state as gas phase fiigacities are only slightly dependent on these binary interaction parameters. For the equilibrium between ammonia in the liquid phase and ammonia in the vapor phase. Equation (13) gives ... [Pg.223]

The activity coefficients can be calculated from Wilson s equations or from UNIFAC if the parameters of the models are known. There are some parameters for UNIFAC in Magnussen, Rasmussen, and Fredenslund, Gupte and Danner,and Hooper, Michel, and Prausnitz. These parameters are not as accurate as those for vapor-liquid equilibrium. [Pg.2085]


See other pages where Vapor-liquid equilibrium activity coefficient models is mentioned: [Pg.15]    [Pg.157]    [Pg.416]    [Pg.379]    [Pg.1013]    [Pg.6]    [Pg.532]    [Pg.1294]    [Pg.159]    [Pg.74]    [Pg.250]    [Pg.257]    [Pg.237]    [Pg.220]    [Pg.237]    [Pg.44]    [Pg.358]    [Pg.1117]    [Pg.1]    [Pg.1478]   
See also in sourсe #XX -- [ Pg.60 , Pg.61 ]




SEARCH



Activation model

Active model

Activity coefficient-models equilibrium

Activity coefficients model

Activity model

Equilibrium activity

Equilibrium activity coefficient

Equilibrium liquid-vapor

Equilibrium modeling

Liquid activity

Liquid activity models

Liquid model

Liquid modeling

Liquid-vapor equilibrium modeling

Modelling liquid activity

Models coefficients

Vapor equilibria

Vapor modeling

Vapor-Liquid Equilibrium Based on Activity Coefficient Models

Vapor-liquid equilibrium activity coefficient

Vapor-liquid equilibrium coefficients

Vapor-liquid equilibrium equilibria

Vaporization Coefficients

© 2024 chempedia.info