Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylonitrile-butadiene epoxy

In order to determine the sources of contamination, some water samples, including wastewaters and effluents from different industries were also sampled. Along the Cinca River and in the industrial area of Monzon, industrial effluents from two different industries were selected the first one produced EPS (Expandable polystyrene) treated with flame retardants and ABS (Acrylonitrile-butadiene-styrene), and the second one produced PVC (Polyvinyl chloride). As regards the Vero River, three industries were sampled the first one, a textile industry which produced polyester fibers treated with flame retardants, the second one produced epoxy... [Pg.170]

The principal kinds of thermoplastic resins include (1) acrylonitrile-butadiene-styrene (ABS) resins (2) acetals (3) acrylics (4) cellulosics (5) chlorinated polyelliers (6) fluorocarbons, sucli as polytelra-fluorclliy lene (TFE), polychlorotrifluoroethylene (CTFE), and fluorinated ethylene propylene (FEP) (7) nylons (polyamides) (8) polycarbonates (9) poly elliylenes (including copolymers) (10) polypropylene (including copolymers) ( ll) polystyrenes and (12) vinyls (polyvinyl chloride). The principal kinds of thermosetting resins include (1) alkyds (2) allylics (3) die aminos (melamine and urea) (4) epoxies (5) phenolics (6) polyesters (7) silicones and (8) urethanes,... [Pg.1316]

ABA ABS ABS-PC ABS-PVC ACM ACS AES AMMA AN APET APP ASA BR BS CA CAB CAP CN CP CPE CPET CPP CPVC CR CTA DAM DAP DMT ECTFE EEA EMA EMAA EMAC EMPP EnBA EP EPM ESI EVA(C) EVOH FEP HDI HDPE HIPS HMDI IPI LDPE LLDPE MBS Acrylonitrile-butadiene-acrylate Acrylonitrile-butadiene-styrene copolymer Acrylonitrile-butadiene-styrene-polycarbonate alloy Acrylonitrile-butadiene-styrene-poly(vinyl chloride) alloy Acrylic acid ester rubber Acrylonitrile-chlorinated pe-styrene Acrylonitrile-ethylene-propylene-styrene Acrylonitrile-methyl methacrylate Acrylonitrile Amorphous polyethylene terephthalate Atactic polypropylene Acrylic-styrene-acrylonitrile Butadiene rubber Butadiene styrene rubber Cellulose acetate Cellulose acetate-butyrate Cellulose acetate-propionate Cellulose nitrate Cellulose propionate Chlorinated polyethylene Crystalline polyethylene terephthalate Cast polypropylene Chlorinated polyvinyl chloride Chloroprene rubber Cellulose triacetate Diallyl maleate Diallyl phthalate Terephthalic acid, dimethyl ester Ethylene-chlorotrifluoroethylene copolymer Ethylene-ethyl acrylate Ethylene-methyl acrylate Ethylene methacrylic acid Ethylene-methyl acrylate copolymer Elastomer modified polypropylene Ethylene normal butyl acrylate Epoxy resin, also ethylene-propylene Ethylene-propylene rubber Ethylene-styrene copolymers Polyethylene-vinyl acetate Polyethylene-vinyl alcohol copolymers Fluorinated ethylene-propylene copolymers Hexamethylene diisocyanate High-density polyethylene High-impact polystyrene Diisocyanato dicyclohexylmethane Isophorone diisocyanate Low-density polyethylene Linear low-density polyethylene Methacrylate-butadiene-styrene... [Pg.958]

The most common advanced composites are made of thermosetting resins, such as epoxy polymers (the most popular singlematrix material), polyesters, vinyl esters, polyurethanes, polyimids, cianamids, bismaleimides, silicones, and melamine. Some of the most widely used thermoplastic polymers are polyvinyl chloride (PVC), PPE (poly[phenylene ether]), polypropylene, PEEK (poly [etheretherketone]), and ABS (acrylonitrile-butadiene-styrene). The precise matrix selected for any given product depends primarily on the physical properties desired for that product. Each type of resin has its own characteristic thermal properties (such as melting point... [Pg.30]

This section focuses on the modification of epoxy resins by blending with acrylonitrile butadiene (nitrile) resins. These are true alloyed blends since the nitrile rubber usually contains no groups that are normally reactive with epoxy groups. The nitrile molecules and the epoxy molecules intermingle as a blend to provide a single-phase alloy. If a large elastomer concentration is used, no phase separation will occur to form precipitates. [Pg.125]

However, newer adhesives systems having moderate temperature resistance have been developed with improved toughness but without sacrificing other properties. When cured, these structural adhesives have discrete elastomeric particles embedded in the matrix. The most common toughened hybrids using this concept are acrylic and epoxy systems. The elastomer is generally a amine- or carboxyl-terminated acrylonitrile butadiene copolymer (ATBN and CTBN). [Pg.240]

The primary use of TBBPA is as a flame retardant in epoxy resin circuit boards and in electronic enclosures made of polycarbonate-acrylonitrile-butadiene-styrene (PC-ABS). Other applications of TBBPA include its use as a flame retardant for plastics, paper, and textiles as a plasticizer in adhesives and coatings and as a chemical intermediate for the synthesis of other flame retardants (e.g., TBBPA allyl ether). It is also been applied to carpeting and office furniture as a flame retardant. [Pg.182]

Vlassopoulos et al. (1998) examined the gelation of three epoxy-rubber thermoset blends (based on TGDDM/DDS/(acrylonitrile/butadiene rubber/methacrylic acid copolymer) of the same chemistry but different pre-cure treatments. The pre-treatments used heat and catalysts to promote epoxy-carboxyl reactions, and there was some evidence of a decrease in gelation time and an effect on pre-gel rheology with these treatments. [Pg.367]

The morphology of ruber modified epoxy photopolymers was found to depend on the cure conditions as well as the nature and concentration of rubber. The commercially available acrylonitrile-butadiene copolymer rubber modifiers with varying percentages of acrylonitrile content were used. They were polymerized using a photocationic initiator involving a UV exposure followed by a thermal cure. Transmission electron micrographs of osmium tetroxide stained specimens, coupled with dynamic mechanical measurements indicated that phase separation and particle size distribution depended not only on rubber concentration and compatibility, but also on the cure conditions. [Pg.345]

The elastomeric materials most commonly used for this purpose are carboxyl-terminated acrylonitrile-butadiene copolymers. The carboxyl groups react with the epoxy group to produce an epoxy-terminated rubber that promotes interfacial bonding in two-phase systems (9). By controlling the concentrations of M, Xj, X2, Z, and U, a broad range of compatibilities can be achieved. Impact resistance and fracture toughness are Increased with minimal sacrifice in molulus and elevated-temperature performance. [Pg.563]

Brominated flame retardants (BFRs) are a structurally diverse group of compounds including aromatics, cyclic aliphatics, phenolic derivatives, ahphatics, and phthahc anhydride derivatives (Figure 31.3). The most common BFRs are tetrabromobisphenol A (TBBPA), polybrominated diphenyl ethers (PBDE), hexabromocyclododecane (HBCD), and polybrominated biphenyls (PBB). The primary use of TBBPA is as reactive additive in epoxy resin circuit boards, while decabromodiphenyloxide (DBDO) is primarily used in high impact polystyrene for electronic enclosures. PBDEs are typically used as the additive type of flame retardant in high impact polystyrene, acrylonitrile butadiene styrene, flexible polyurethane foam, textile coatings, wire and cable insulation and electrical connectors. [Pg.1202]

Carboxyl-Terminated Butadiene-Acrylonitrile-Modifl Epoxy Resin and Its Graphite Fiber-Reinforced Composite... [Pg.91]

HONG ET AL. Butadiene-Acrylonitrile-Modified Epoxy Resin... [Pg.93]

Another route of carbonyl oxide deactivation is double-bond epoxi-dation. Various schemes of olefin epoxidation during ozonolysis have been suggested but the epoxidation through Cl (Scheme 2, reaction 9) is presumed to be the most probable with the C=C bonds in polyisoprenes [20, 21], Since a peak at 2.73 ppm has also been observed under similar conditions on ozonolysis of acrylonitrile—butadiene copolymers [31], as well as during ozonolysis of polybutadienes, it can be assumed that the epoxidation reaction takes place with the participation of both types of CL... [Pg.300]

All TP or TS matrix property can be improved or changed to meet varying requirements by using reinforcements. Typical thermoplastics used include TP polyesters, polyethylenes (PEs), nylons (polyamides/ PAs), polycarbonates (PCs), TP polyurethanes (PURs), acrylics (PMMAs), acetals (polyoxymethylenes/POMs), polypropylenes (PPs), acrylonitrile butadienes (ABSs), and fluorinated ethylene propylenes (FEPs). The thermoset plastics include TS polyesters (unsaturated polyesters), epoxies (EPs), TS polyurethanes (PURs), diallyl phthalates (DAPs), phenolics (phenol formaldehydes/PFs), silicones (Sis), and melamine formaldehydes (MFs). RTSs predominate for the high performance applications with RTFs fabricating more products. The RTPs continue to expand in the electronic, automotive, aircraft, underground pipe, appliance, camera, and many other products. [Pg.14]

Chen and Jan [133] showed that bimodal distributions could be obtained by using two different rubbers as modifiers of a DGEBA-based epoxy resin cured with piperidine. The rubbers were two acrylonitrile-butadiene copolymers (CTBNs), with different AN content, i.e. 18 and 26%. The miscibility with the epoxy resin (and the corresponding cloud-point conversion) increased with the AN content. Therefore, when 10 wt% of CTBN (26% AN) was used as modifier, a high concentration (Cp == 13.4 pm ) of small particles (D = 0.2 pm) was obtained. When the same amount of CTBN (18% AN) was used as modifier. [Pg.146]

Fig. 35. Dependence of fracture energy on the modifier composition (CTBN 1300 X 9 = carboxyl-tenninated acrylonitrile, acrylic acid and butadiene rubber with 18% acrylonitrile and 2% acrylic acid contents CTBN 1300x 13 = carboxyl-terminated acrylonitrile, butadiene rubber with 26% acrylonitrile content) (Reprinted from Journal of Materials Science, 27, T.K. Chen, Y.H. Jan, Fracture mechanism of toughened epoxy resin with bimodal rubber-particle size distribution, 111-121, Copyright (1992), with kind permission from Chapman Hall, London, UK)... Fig. 35. Dependence of fracture energy on the modifier composition (CTBN 1300 X 9 = carboxyl-tenninated acrylonitrile, acrylic acid and butadiene rubber with 18% acrylonitrile and 2% acrylic acid contents CTBN 1300x 13 = carboxyl-terminated acrylonitrile, butadiene rubber with 26% acrylonitrile content) (Reprinted from Journal of Materials Science, 27, T.K. Chen, Y.H. Jan, Fracture mechanism of toughened epoxy resin with bimodal rubber-particle size distribution, 111-121, Copyright (1992), with kind permission from Chapman Hall, London, UK)...
Resin, Epoxy, Expanded (Also Irradiated) a de n 631-0497 see Copoly(Acrylonitrile - Butadiene) 631-... [Pg.74]

Acrylonitrile/butadiene/styrene copolymer Cycom 69 Cycom 92. See Epoxy resin Cycom 703 Cycom 704. See Polyester resin, thermosetting... [Pg.1138]

Therm-Chek 900. See Epoxy resin Thermfio . See Food starch, modified Thermid MC-600. See Polyimide, thermoset Thermocomp A-1000. See Acrylonitrile/butadiene/styrene copolymer Thermocomp B-1000. See Styrene/acrylonitrile copolymer Thermocomp C-1000. See Polystyrene Thermocomp D-1000, Thermocomp DL-4020FR. See Polycarbonate Thermocomp E-1000. See Polyetherimide resin... [Pg.4403]


See other pages where Acrylonitrile-butadiene epoxy is mentioned: [Pg.134]    [Pg.531]    [Pg.31]    [Pg.341]    [Pg.323]    [Pg.786]    [Pg.195]    [Pg.387]    [Pg.207]    [Pg.362]    [Pg.254]    [Pg.192]    [Pg.38]    [Pg.197]    [Pg.531]    [Pg.381]    [Pg.216]    [Pg.114]    [Pg.415]    [Pg.315]    [Pg.68]    [Pg.77]   


SEARCH



Acrylonitrile-butadiene epoxy resin

Acrylonitrile-butadiene rubber epoxy-modified

Butadiene-acrylonitrile

Epoxy composites acrylonitrile-butadiene

© 2024 chempedia.info