Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epoxy composites acrylonitrile-butadiene

The most common advanced composites are made of thermosetting resins, such as epoxy polymers (the most popular singlematrix material), polyesters, vinyl esters, polyurethanes, polyimids, cianamids, bismaleimides, silicones, and melamine. Some of the most widely used thermoplastic polymers are polyvinyl chloride (PVC), PPE (poly[phenylene ether]), polypropylene, PEEK (poly [etheretherketone]), and ABS (acrylonitrile-butadiene-styrene). The precise matrix selected for any given product depends primarily on the physical properties desired for that product. Each type of resin has its own characteristic thermal properties (such as melting point... [Pg.30]

Fig. 35. Dependence of fracture energy on the modifier composition (CTBN 1300 X 9 = carboxyl-tenninated acrylonitrile, acrylic acid and butadiene rubber with 18% acrylonitrile and 2% acrylic acid contents CTBN 1300x 13 = carboxyl-terminated acrylonitrile, butadiene rubber with 26% acrylonitrile content) (Reprinted from Journal of Materials Science, 27, T.K. Chen, Y.H. Jan, Fracture mechanism of toughened epoxy resin with bimodal rubber-particle size distribution, 111-121, Copyright (1992), with kind permission from Chapman Hall, London, UK)... Fig. 35. Dependence of fracture energy on the modifier composition (CTBN 1300 X 9 = carboxyl-tenninated acrylonitrile, acrylic acid and butadiene rubber with 18% acrylonitrile and 2% acrylic acid contents CTBN 1300x 13 = carboxyl-terminated acrylonitrile, butadiene rubber with 26% acrylonitrile content) (Reprinted from Journal of Materials Science, 27, T.K. Chen, Y.H. Jan, Fracture mechanism of toughened epoxy resin with bimodal rubber-particle size distribution, 111-121, Copyright (1992), with kind permission from Chapman Hall, London, UK)...
Electrical conductivity measurements have been reported on a wide range of polymers including carbon nanofibre reinforced HOPE [52], carbon black filled LDPE-ethylene methyl acrylate composites [28], carbon black filled HDPE [53], carbon black reinforced PP [27], talc filled PP [54], copper particle modified epoxy resins [55], epoxy and epoxy-haematite nanorod composites [56], polyvinyl pyrrolidone (PVP) and polyvinyl alcohol (PVA) blends [57], polyacrylonitrile based carbon fibre/PC composites [58], PC/MnCli composite films [59], titanocene polyester derivatives of terephthalic acid [60], lithium trifluoromethane sulfonamide doped PS-block-polyethylene oxide (PEO) copolymers [61], boron containing PVA derived ceramic organic semiconductors [62], sodium lanthanum tetrafluoride complexed with PEO [63], PC, acrylonitrile butadiene [64], blends of polyethylene dioxythiophene/ polystyrene sulfonate, PVC and PEO [65], EVA copolymer/carbon fibre conductive composites [66], carbon nanofibre modified thermotropic liquid crystalline polymers [67], PPY [68], PPY/PP/montmorillonite composites [69], carbon fibre reinforced PDMS-PPY composites [29], PANI [70], epoxy resin/PANI dodecylbenzene sulfonic acid blends [71], PANI/PA 6,6 composites [72], carbon fibre EVA composites [66], HDPE carbon fibre nanocomposites [52] and PPS [73]. [Pg.110]

Many other types of ECP have been described. These include PS-block-PPO [61], boron containing PVA [62], polyethylene dioxythiophene/polystyrene sulfonate [65], PC-ABS composites [64], PEO composites [64], PEO complexes with sodium lanthanum tetrafluoride [63], chlorine substituted PANI [70], PVP-PVA coupled with potassium bromate [57], PANI-PA 6,6 composite films [72], talc-PPY composites [54], epoxy resin alpha-haematite nanorod composites [56], PP-montmorillonite composites [69], magnetite containing polymers [105], LDPE [27], PC-acrylonitrile-butadiene composites [106], sodium ion conducting PEO complexed with sodium lanthanum tetrafluoride [63], PVDE [107], PANI composites [108], PP novolac resins [109], dendrimers containing light switchable azobenzene [110],PVP/PVA [107] and PPY[111]. [Pg.115]

Some measurements of this property have been made in a range of electrically conducting polymers. These include epoxy resin/polyaniline-dodecylbenzene sulfonic acid blends [38], polystyrene-black polyphenylene oxide copolymers [38], semiconductor-based polypyrroles [33], titanocene polyesters [40], boron-containing polyvinyl alcohol [41], copper-filled epoxy resin [42], polyethylidene dioxy thiophene-polystyrene sulfonate, polyvinyl chloride, polyethylene oxide [43], polycarbonate/acrylonitrile-butadiene-styrene composites [44], polyethylene oxide complexes with sodium lanthanum tetra-fluoride [45], chlorine-substituted polyaniline [46], polyvinyl pyrolidine-polyvinyl alcohol coupled with potassium bromate tetrafluoromethane sulfonamide [47], doped polystyrene block polyethylene [38, 39], polypyrrole [48], polyaniline-polyamide composites [49], and polydimethyl siloxane-polypyrrole composites [50]. [Pg.135]

ABC acrylonitrile-butadiene-styrene ABR polyacrylate ABS acrylontrile-butadiene-styrene AC alternating current AC cellulose acetate ACES Accurate Clear Epoxy Solid ACS American Chemical Society ACTC Advanced Composite Technology Consortium ad adhesive... [Pg.480]

A wide variety of well-known polymers are currently rubber modified, always with the intent of improving the toughness of the material either at ambient temperature, or, often, at sub-ambient. Most well known is high impact polystyrene (HIPS) which, in terms of composition, is polystyrene containing 5-10% polybutadiene rubber. ABS (acrylonitrile/butadiene/styrene) is similar to HIPS except the glassy polymer is the more heat and solvent resistant poly(styrene-co-acrylonitrile). Poly(vinyl chloride) (PVC), polypropylene (PP), epoxy resins, and nylons are all available in rubber-... [Pg.1202]

Studies of the particle—epoxy interface and particle composition have been helphil in understanding the mbber-particle formation in epoxy resins (306). Based on extensive dynamic mechanical studies of epoxy resin cure, a mechanism was proposed for the development of a heterophase morphology in mbber-modifted epoxy resins (307). Other functionalized mbbers, such as amine-terminated butadiene—acrylonitrile copolymers (308) and -butyl acrylate—acryhc acid copolymers (309), have been used for toughening epoxy resins. [Pg.422]

Effect of Molecular Configuration of Elastomer. The extent of the impact and strength improvements of ERL-4221 depends on the chemical structure and composition of the elastomer modifier. The data shown in Table I indicate that the carboxyl terminated 80-20 butadiene-acrylonitrile copolymer (CTBN) is the most effective toughening and reinforcing agent. The mercaptan terminated copolymer (MTBN) is considerably less effective as far as tensile strength and heat distortion temperature are concerned. The mercaptan groups are considerably less reactive with epoxides than carboxyls (4), and this difference in the rate of reaction may influence the extent of the epoxy-elastomer copolymerization and therefore the precipitation of the rubber as distinct particles. [Pg.555]

The polyester resin used in this study, MR 13006 (Aristech Corporation), was supplied as a 60-wt% solution in styrene monomer. The epoxy resin, a digly-cidyl ether of bisphenol A (Epon 828), was obtained from Shell Chemical Company. The reactive liquid rubber, an amino-terminated butadiene-acrylonitrile copolymer (ATBN 1300 x 16), was provided by the BFGoodrich Company. The resin was mixed with additional styrene monomer to maintain the ratio of reactive unsaturation in the polyester-to-styrene monomer at 1 to 3. We added 1.5 wt% of tert-butylperbenzoate initiator to the solution, which we then degassed under vacuum. The mixture was poured between vertical, Teflon-coated, aluminum plates and cured under atmospheric pressure at 100 °C. In the modified compositions, the rubber was first dissolved in the styrene monomer, and then all the other components were added and the solution cured as described. In all the compositions, the ratio of the amine functions with respect to the epoxy functions was kept at 1 to ensure complete cure of the epoxy. [Pg.143]

Epoxy toughening additives initially were based on rubbery inclusions or functionalized oligomers (carboxy or amine terminated butadiene/ acrylonitrile copolymers). More recently, impact modifiers (core-shell type) similar to that commonly employed with PVC have been proposed. For composites, tougher epoxy matrix candidates... [Pg.1190]

Carboxyl-Terminated Butadiene-Acrylonitrile-Modifl Epoxy Resin and Its Graphite Fiber-Reinforced Composite... [Pg.91]

Preformed particles are incorporated into the epoxy matrix by simple mechanical mixing. The dispersibility of the particles can be improved by 1) introducing crosslinking into the shell or 2) using comonomer-like acrylonitrile or GMA, which increases the interfacial adhesion by polar or chemical interaction [96, 97]. Quan and co-workers [98] reported that for poly (butadiene-co-styrene) core poly (methyl methacrylate) (PMMA) shell particles, the cluster size reduces from 3-5 pm to 1-3 pm as a result of using 5 wt% crosslinker (divinyl benzene). They also found that the cluster size could be further reduced to 1-2 pm by using a methyl methacrylate-acrylonitrile (MMA-AN) or methyl methacrylate-glycidyl methacrylate (MMA-GMA) copolymer shell composition. [Pg.258]

Amine-cured epoxy resins are extensively used as structural matrices in composite manufacture and as such the improvement of their mechanical properties is very desirable. As in the case of polystyrene the addition of a rubber phase provides an energy dissipation mechanism below and this increases the toughness of the overall material. Carboxy-terminated butadiene acrylonitrile (CTBN) is initially soluble in the reaction mixture of digylcidyl ether of bisphenol A (DGEBA) and the low-temperature cure system triethylenetetra-amine (TFTA) ... [Pg.220]

The second ABCP-type materials of commerce are the rubber-toughened epoxy resinsUsually the epoxy resins are based on the diglycidyl ether of bisphenol A (DGEBA). Carboxyl-terminated butadiene-acrylonitrile (CTBN) rubber is the elastomer of preference. A typical composition is ... [Pg.99]

Semi-SINs using amine-cured epoxies and butadiene-acrylonitrile rubber " were found to yield adhesives with extremely high bonding strength to metal. The rubber was based on Hycar, and the epoxy was based on a range of compositions, including epoxidized soy bean oil (Example 2). Sometimes the rubber was sulfur cured, yielding an IPN. [Pg.234]


See other pages where Epoxy composites acrylonitrile-butadiene is mentioned: [Pg.786]    [Pg.387]    [Pg.192]    [Pg.531]    [Pg.315]    [Pg.5227]    [Pg.337]    [Pg.197]    [Pg.7]    [Pg.240]    [Pg.103]    [Pg.159]    [Pg.7]    [Pg.261]    [Pg.444]    [Pg.422]    [Pg.7]    [Pg.330]    [Pg.422]    [Pg.329]    [Pg.662]    [Pg.614]    [Pg.42]    [Pg.72]    [Pg.92]    [Pg.1]    [Pg.104]    [Pg.759]    [Pg.361]    [Pg.370]    [Pg.2685]    [Pg.100]    [Pg.486]    [Pg.583]   


SEARCH



Acrylonitrile-butadiene epoxy

Butadiene-acrylonitrile

© 2024 chempedia.info