Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid chloride, alcohols from reactions

Acid anhydride-diol reaction, 65 Acid anhydride-epoxy reaction, 85 Acid binders, 155, 157 Acid catalysis, of PET, 548-549 Acid-catalyzed hydrolysis of nylon-6, 567-568 of nylon-6,6, 568 Acid chloride, poly(p-benzamide) synthesis from, 188-189 Acid chloride-alcohol reaction, 75-77 Acid chloride-alkali metal diphenol salt interfacial reactions, 77 Acid chloride polymerization, of polyamides, 155-157 Acid chloride-terminated polyesters, reaction with hydroxy-terminated polyethers, 89 Acid-etch tests, 245 Acid number, 94 Acidolysis, 74 of nylon-6,6, 568... [Pg.575]

The most important reactions of carboxylic acids are the conversions to various carboxylic acid derivatives, e.g. acid chlorides, acid anhydrides and esters. Esters are prepared by the reaction of carboxylic acids and alcohols. The reaction is acid catalysed and is known as Fischer esterification (see Section 5.5.5). Acid chlorides are obtained from carboxylic acids by the treatment of thionyl chloride (SOCI2) or oxalyl chloride [(COCl)2], and acid anhydrides are produced from two carboxylic acids. A summary of the conversion of carboxylic acid is presented here. All these conversions involve nucleophilic acyl substitutions (see Section 5.5.5). [Pg.93]

Optically pure 1,2-diols.1 The acyllactones 1, obtained by reaction of a Grig-nard reagent with the acid chloride derived from (R)-( -)- or S-( + )-glutamic acid, are reduced by lithium tri-sec-butylborohydride almost exclusively to syn-alcohols (2), regardless of the nature of the R group. In contrast, reduction of 1 with sodium... [Pg.167]

Addition tube, 20, 21 Alanine, /3-(3,4-dihydroxyphenyl)-N-METHYL-, 22, 89, 91 Alcoholic hydrochloric acid, 22, 77, 83 standardization, 22, 80 Alcoholysis, 20, 67 Aldehyde synthesis, 20, 14 from acid chlorides by Rosenmund reaction, 21, 84, 87, 88, 110 Alkylation of thiourea, 22, 59 Alkylchlororesorcinols, 20, 59 Alkylene bromide, 20, 24 S-Alkylthiuronium halides, 22, 60 dl-ALLOTHREONINE, 20, 10 ... [Pg.53]

In the laboratory, amides and esters are usually prepared from the acid chloride rather than from the acid itself. Both the preparation of the acid chloride and its reactions with ammonia or an alcohol are rapid, essentially irreversible reactions. It is more convenient to carry out these two steps than the single slow, reversible reaction with the acid. For example n... [Pg.666]

Starting from 6-methoxynaphth-2-oic acid (64), the 1,2,3,4,5,8-hexahydro-derivative (65) was prepared by reduction with excess lithium and t-butyl alcohol in liquid ammonia. Compound (65) was converted into the keto-acid (66) by hydrolysis. Reduction of (66) with lithium tri-t-butoxyaluminium hydride gave the hydroxy-acid (67). The acetate derivative (68) was converted into the acid chloride (69) by reaction with oxalyl chloride in pyridine. Treatment of this compound with diazomethane afforded the diazoketone (70). Decomposition of the latter with copper powder in cyclohexane gave the cyclopropyl ketone (71) in yields of 70—80%. The acetate function was then hydrolysed, and the resulting hydroxy-ketone (72) was oxidized to the cyclopropyl diketone (73) with Jones reagent. Treatment of (73) with a weakly acidic acetone solution or adsorption on to basic alumina produced the enedione (74) via a retrograde... [Pg.249]

Place 1 0 g. of the monobasic acid and 2 g. of aniline or p-toluidine in a dry test-tube, attach a short air condenser and heat the mixture in an oil bath at 140-160° for 2 hours do not reflux too vigorously an acid that boils below this temperature range and only allow steam to escape from the top of the condenser. For a sodium salt, use the proportions of 1 g. of salt to 1 5 g. of the base. If the acid is dibasic, employ double the quantity of amine and a reaction temperature of 180-200° incidentally, the procedure is recommended for dibasic acids since the latter frequently give anhydrides with thionyl chloride. Powder the cold reaction mixture, triturate it with 20-30 ml. of 10 per cent, hydrochloric acid, and recrystallise from dilute alcohol. [Pg.362]

Dissolve 0 01 g. equivalent of the amino acid in 0 03 g. equivalent of N sodium hydroxide solution and cool to 5° in a bath of ice. Add, with rapid stirring, 0 -01 g. equivalent of 2 4-dichlorophenoxyacetyl chloride dissolved in 5 ml. of dry benzene at such a rate (5-10 minutes) that the temperature of the mixture does not rise above 15° if the reaction mixture gels after the addition of the acid chloride, add water to thin it. Remove the ice bath and stir for 2-3 hours. Extract the resulting mixture with ether, and acidify the aqueous solution to Congo red with dilute hydrochloric acid. Collect the precipitate by filtration and recrystallise it from dilute alcohol. [Pg.438]

The apparatus required is similar to that described for Diphenylmelhane (Section IV,4). Place a mixture of 200 g. (230 ml.) of dry benzene and 40 g. (26 ml.) of dry chloroform (1) in the flask, and add 35 g. of anhydrous aluminium chloride in portions of about 6 g. at intervals of 5 minutes with constant shaking. The reaction sets in upon the addition of the aluminium chloride and the liquid boils with the evolution of hydrogen chloride. Complete the reaction by refluxing for 30 minutes on a water bath. When cold, pour the contents of the flask very cautiously on to 250 g. of crushed ice and 10 ml. of concentrated hydrochloric acid. Separate the upper benzene layer, dry it with anhydrous calcium chloride or magnesium sulphate, and remove the benzene in a 100 ml. Claisen flask (see Fig. II, 13, 4) at atmospheric pressure. Distil the remaining oil under reduced pressure use the apparatus shown in Fig. 11,19, 1, and collect the fraction b.p. 190-215°/10 mm. separately. This is crude triphenylmethane and solidifies on cooling. Recrystallise it from about four times its weight of ethyl alcohol (2) the triphenylmethane separates in needles and melts at 92°. The yield is 30 g. [Pg.515]

Method 2. Place a 3 0 g. sample of the mixture of amines in a flask, add 6g. (4-5 ml.) of benzenesulphonyl chloride (or 6 g. of p-toluenesulphonyl chloride) and 100 ml. of a 5 per cent, solution of sodium hydroxide. Stopper the flask and shake vigorously until the odour of the acid chloride has disappeared open the flask occasionally to release the pressure developed by the heat of the reaction. AUow the mixture to cool, and dissolve any insoluble material in 60-75 ml. of ether. If a solid insoluble in both the aqueous and ether layer appears at this point (it is probably the sparingly soluble salt of a primary amine, e.g., a long chain compound of the type CjH5(CH2) NHj), add 25 ml. of water and shake if it does not dissolve, filter it off. Separate the ether and aqueous layers. The ether layer will contain the unchanged tertiary amine and the sulphonamide of the secondary amine. Acidify the alkaline aqueous layer with dilute hydrochloric acid, filter off the sulphonamide of the primary amine, and recrystaUise it from dilute alcohol. Extract the ether layer with sufficient 5 per cent, hydrochloric acid to remove all the tertiary amine present. Evaporate the ether to obtain the sulphonamide of the secondary amine recrystaUise it from alcohol or dilute alcohol. FinaUy, render the hydrochloric acid extract alkaline by the addition of dilute sodium hydroxide solution, and isolate the tertiary amine. [Pg.651]

Most aromatic acid chlorides impart a strongly acid reaction when shaken with water (compare Section 111,88). All are completely hydrolysed by boiling with solutions of caustic alkalis and yield no product volatile from the alkaline solution (compare Eaters, Sections 111,106 and IV, 183). They may be distinguished from acids by their facile reactions with alcohols (compare Section 111,27), phenols (compare Section IV,114), and amines (compare Sections 111,123 and IV.lOO). [Pg.795]

An ethereal solution of diazomethane free from alcohol may be prepared as follows such a solution is required, for example, in the Amdt-Eistert reaction with acid chlorides (compare Section VI,17). In a 100 ml. longnecked distilling flask provided with a dropping funnel and an efficient downward condenser, place a solution of 6 g. of potassium hydroxide in... [Pg.971]

As a dibasic acid, malic acid forms the usual salts, esters, amides, and acyl chlorides. Monoesters can be prepared easily by refluxing malic acid, an alcohol, and boron trifluoride as a catalyst (9). With polyhydric alcohols and polycarboxyUc aromatic acids, malic acid yields alkyd polyester resins (10) (see Alcohols, polyhydric Alkyd resins). Complete esterification results from the reaction of the diester of maUc acid with an acid chloride, eg, acetyl or stearoyl chloride (11). [Pg.521]

Ahyl alcohol undergoes reactions typical of saturated, aUphatic alcohols. Ahyl compounds derived from ahyl alcohol and used industriahy, are widely manufactured by these reactions. For example, reactions of ahyl alcohol with acid anhydrides, esters, and acid chlorides yield ahyl esters, such as diahyl phthalates and ahyl methacrylate reaction with chloroformate yields carbonates, such as diethylene glycol bis(ahyl carbonate) addition of ahyl alcohol to epoxy groups yields products used to produce ahyl glycidyl ether (33,34). [Pg.74]

Chemical Properties. Like neopentanoic acid, neodecanoic acid, C2QH2QO2, undergoes reactions typical of carboxyHc acids. For example, neodecanoic acid is used to prepare acid chlorides, amides (76), and esters (7,11,77,78), and, like neopentanoic acid, is reduced to give alcohols and alkanes (21,24). One area of reaction chemistry that is different from the acids is the preparation of metal salts. Both neopentanoic acid and neodecanoic acid, like all carboxyHc acids, can form metal salts. However, in commercial appHcations, metal salt formation is much more important for neodecanoic acid than it is for neopentanoic acid. [Pg.105]

In a 3-I. round-bottomed flask are placed 500 cc. (400 g., 8.7 moles) of absolute alcohol which has been saturated in the cold with hydrochloric acid gas (Note i), 870 cc. (6S0 g., 20 moles) of 96 per cent alcohol (Note 2) and 70 g. (1.03 moles) of methyleneaminoacetonitrile (Note 3). This mixture is refluxed on a steam bath for three hours (Note 4). During the refluxing, ammonium chloride separates. After the reaction is complete, the hot alcohol solution is filtered with suction and the filtrate cooled, thus allowing the glycine ester hydrochloride to separate out in fine white needles. The product is filtered with suction, sucked as dry as possible on the filter, and then allowed to dry in the air. The yield is about no g. The alcohol from the filtrate is distilled (Note 5) until about one-third of its volume is left and again cooled and a second crop of crystals is obtained. The total yield of product, m.p. 142-143, varies from 125 to 129 g. (89-91 per cent of the theoretical amount). If a very pure product is desired, it may be recrystallized from absolute alcohol. [Pg.46]


See other pages where Acid chloride, alcohols from reactions is mentioned: [Pg.55]    [Pg.96]    [Pg.197]    [Pg.290]    [Pg.132]    [Pg.48]    [Pg.974]    [Pg.4522]    [Pg.28]    [Pg.96]    [Pg.250]    [Pg.282]    [Pg.312]    [Pg.389]    [Pg.169]    [Pg.234]    [Pg.230]    [Pg.542]    [Pg.282]    [Pg.102]    [Pg.263]    [Pg.85]   
See also in sourсe #XX -- [ Pg.800 , Pg.801 , Pg.802 , Pg.803 , Pg.804 ]




SEARCH



Acid chloride, alcohols from

Acid chlorides, reactions

Chlorides alcohols

Chlorides, from alcohols

© 2024 chempedia.info