Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid chloride alcohols from

Acid chloride, alcohols from, 804 alcoholysis of, 802-803 amides from, 803-804 amines from, 933-935 amjnolysis of, 803-804 carboxylic acids from, 802 electrostatic potential map of, 791... [Pg.1281]

From the acid chloride. By the interaction of the acid chloride (prepared from the acid and thionyl chloride) and the calculated quantity of the alcohol at 0°, for example ... [Pg.382]

Acid anhydride-diol reaction, 65 Acid anhydride-epoxy reaction, 85 Acid binders, 155, 157 Acid catalysis, of PET, 548-549 Acid-catalyzed hydrolysis of nylon-6, 567-568 of nylon-6,6, 568 Acid chloride, poly(p-benzamide) synthesis from, 188-189 Acid chloride-alcohol reaction, 75-77 Acid chloride-alkali metal diphenol salt interfacial reactions, 77 Acid chloride polymerization, of polyamides, 155-157 Acid chloride-terminated polyesters, reaction with hydroxy-terminated polyethers, 89 Acid-etch tests, 245 Acid number, 94 Acidolysis, 74 of nylon-6,6, 568... [Pg.575]

Optically pure 1,2-diols.1 The acyllactones 1, obtained by reaction of a Grig-nard reagent with the acid chloride derived from (R)-( -)- or S-( + )-glutamic acid, are reduced by lithium tri-sec-butylborohydride almost exclusively to syn-alcohols (2), regardless of the nature of the R group. In contrast, reduction of 1 with sodium... [Pg.167]

The at complex from DIB AH and butyllithium is a selective reducing agent.16 It is used tor the 1,2-reduction of acyclic and cyclic enones. Esters and lactones are reduced at room temperature to alcohols, and at -78 C to alcohols and aldehydes. Acid chlorides are rapidly reduced with excess reagent at -78 C to alcohols, but a mixture of alcohols, aldehydes, and acid chlorides results from use of an equimolar amount of reagent at -78 C. Acid anhydrides are reduced at -78 C to alcohols and carboxylic acids. Carboxylic acids and both primary and secondary amides are inert at room temperature, whereas tertiary amides (as in the present case) are reduced between 0 C and room temperature to aldehydes. The at complex rapidly reduces primary alkyl, benzylic, and allylic bromides, while tertiary alkyl and aryl halides are inert. Epoxides are reduced exclusively to the more highly substituted alcohols. Disulfides lead to thiols, but both sulfoxides and sulfones are inert. Moreover, this at complex from DIBAH and butyllithium is able to reduce ketones selectively in the presence of esters. [Pg.170]

Phosphorus pentachloride is one of the most powerful reagents by which the hydroxyl of organic compounds can he replaced by chlorine. Alkyl chlorides, RC1, from alcohols, and acid chlorides, RCOC1, from acids, are often prepared by this method. The pentachloride is thereby converted first into the oxychloride, P0C13, which may itself be used for the substitution of OH by Cl. [Pg.98]

Variants of the ethyl ketone function of methadone, an aspect already broached with mention of dextromoramide, include ester, sulphone, and secondary alcohol functions in addition to (-amides. The ethyl ester analog 14a obtained by treating the acid chloride derived from methadone cyanide with ethanol is markedly inferior in potency to methadone, while the sulfone 14b (obtained by aminoalkylation of benzhydryl ethyl sulfone) is equipotent... [Pg.308]

Reduction of aldehydes and ketones allylic alcohols from a, 3-unsaturated aldehydes and ketones alcohols from carboxylic acid chlorides amines from aliphatic azides.21 ... [Pg.66]

Lithium tetrahydridoaluminate/aluminum chloride Alcohols from carboxylic acid esters... [Pg.329]

Cool 1 ml. of amylene in ice and add 1 ml. of cold, dilute sulphuric acid (2 acid 1 water), and shake gently until the mixture is homogeneous. Dilute with 2 ml. of water if an upper layer of the alcohol does not separate immediately, introduce a little sodium chloride into the mixture in order to decrease the solubility of the alcohol. Observe the odour. The unsaturated hydrocarbon is thus largely reconverted into the alcohol from which it may be prepared. [Pg.241]

Mix 40 g. (51 ml.) of isopropyl alcohol with 460 g. (310 ml.) of constant boiling point hydrobromic acid in a 500 ml. distilling flask, attach a double surface (or long Liebig) condenser and distil slowly (1-2 drops per second) until about half of the liquid has passed over. Separate the lower alkyl bromide layer (70 g.), and redistil the aqueous layer when a further 7 g. of the crude bromide will be obtained (1). Shake the crude bromide in a separatory funnel successively with an equal volume of concentrated hydrochloric acid (2), water, 5 per cent, sodium bicarbonate solution, and water, and dry with anhydrous calcium chloride. Distil from a 100 ml. flask the isopropyl bromide passes over constantly at 59°. The yield is 66 g. [Pg.277]

Amides. TVeat the acid chloride cautiously with about 20 parts of concentrated ammonia solution (sp. gr. 0 - 88) and warm for a few moments. If no solid separates on cooling, evaporate to dryness on a water bath. Recrystallise the crude amide from water or dilute alcohol. [Pg.361]

Alternatively, dissolve or suspend the acid chloride in 5-10 ml. of dry ether or dry benzene, and pass in dry ammonia gas. If no solid separates, evaporate the solvent. Recrystallise the amide from water or dilute alcohol. [Pg.361]

Anilides. Dilute the acid chloride with 5 ml. of pure ether (or benzene), and add a solution of 2 g. of pure aniline in 15-20 ml. of the same solvent until the odour of the acid chloride has disappeared excess of aniline is not harmful. Shake with excess of dilute hydrochloric acid to remove aniline and its salts, wash the ethereal (or benzene) layer with 3-5 ml. of water, and evaporate the solvent [CAUTION ] Recrystallise the anilide from water, dilute alcohol or benzene - light petroleum (b.p. 60-80°). [Pg.361]

Place 1 0 g. of the monobasic acid and 2 g. of aniline or p-toluidine in a dry test-tube, attach a short air condenser and heat the mixture in an oil bath at 140-160° for 2 hours do not reflux too vigorously an acid that boils below this temperature range and only allow steam to escape from the top of the condenser. For a sodium salt, use the proportions of 1 g. of salt to 1 5 g. of the base. If the acid is dibasic, employ double the quantity of amine and a reaction temperature of 180-200° incidentally, the procedure is recommended for dibasic acids since the latter frequently give anhydrides with thionyl chloride. Powder the cold reaction mixture, triturate it with 20-30 ml. of 10 per cent, hydrochloric acid, and recrystallise from dilute alcohol. [Pg.362]

Dissolve 0 01 g. equivalent of the amino acid in 0 03 g. equivalent of N sodium hydroxide solution and cool to 5° in a bath of ice. Add, with rapid stirring, 0 -01 g. equivalent of 2 4-dichlorophenoxyacetyl chloride dissolved in 5 ml. of dry benzene at such a rate (5-10 minutes) that the temperature of the mixture does not rise above 15° if the reaction mixture gels after the addition of the acid chloride, add water to thin it. Remove the ice bath and stir for 2-3 hours. Extract the resulting mixture with ether, and acidify the aqueous solution to Congo red with dilute hydrochloric acid. Collect the precipitate by filtration and recrystallise it from dilute alcohol. [Pg.438]

Method 2. Place a 3 0 g. sample of the mixture of amines in a flask, add 6g. (4-5 ml.) of benzenesulphonyl chloride (or 6 g. of p-toluenesulphonyl chloride) and 100 ml. of a 5 per cent, solution of sodium hydroxide. Stopper the flask and shake vigorously until the odour of the acid chloride has disappeared open the flask occasionally to release the pressure developed by the heat of the reaction. AUow the mixture to cool, and dissolve any insoluble material in 60-75 ml. of ether. If a solid insoluble in both the aqueous and ether layer appears at this point (it is probably the sparingly soluble salt of a primary amine, e.g., a long chain compound of the type CjH5(CH2) NHj), add 25 ml. of water and shake if it does not dissolve, filter it off. Separate the ether and aqueous layers. The ether layer will contain the unchanged tertiary amine and the sulphonamide of the secondary amine. Acidify the alkaline aqueous layer with dilute hydrochloric acid, filter off the sulphonamide of the primary amine, and recrystaUise it from dilute alcohol. Extract the ether layer with sufficient 5 per cent, hydrochloric acid to remove all the tertiary amine present. Evaporate the ether to obtain the sulphonamide of the secondary amine recrystaUise it from alcohol or dilute alcohol. FinaUy, render the hydrochloric acid extract alkaline by the addition of dilute sodium hydroxide solution, and isolate the tertiary amine. [Pg.651]

Treat 1 g. (1 ml.) of the amine with 4 mols of 10 per cent, sodium or potassium hydroxide solution (say, 20 ml,), and add 1 -5 mols (or 3 g. if the molecular weight is unknown) of benzenesulphonyl or p-toluenesulphonyl chloride in small portions with constant shaking. To remove the excess of acid chloride, either shake vigorously or warm gently. Acidify with dilute hydrochloric acid and filter off the sulphonamide. Recrystallise it from alcohol or dilute alcohol. [Pg.653]

The procedure is to pass purified hydrogen through a hot solution of the pure acid chloride in toluene or xylene in the presence of the catalyst the exit gases are bubbled through water to absorb the hydrogen chloride, and the solution is titrated with standard alkali from time to time so that the reduction may be stopped when the theoretical quantity of hydrogen chloride has been evolved. Further reduction would lead to the corresponding alcohol and hydrocarbon ... [Pg.691]

Most aromatic acid chlorides impart a strongly acid reaction when shaken with water (compare Section 111,88). All are completely hydrolysed by boiling with solutions of caustic alkalis and yield no product volatile from the alkaline solution (compare Eaters, Sections 111,106 and IV, 183). They may be distinguished from acids by their facile reactions with alcohols (compare Section 111,27), phenols (compare Section IV,114), and amines (compare Sections 111,123 and IV.lOO). [Pg.795]


See other pages where Acid chloride alcohols from is mentioned: [Pg.49]    [Pg.290]    [Pg.95]    [Pg.22]    [Pg.4522]    [Pg.529]    [Pg.28]    [Pg.250]    [Pg.276]    [Pg.282]    [Pg.312]    [Pg.389]    [Pg.401]    [Pg.436]    [Pg.769]   
See also in sourсe #XX -- [ Pg.804 ]

See also in sourсe #XX -- [ Pg.804 ]




SEARCH



Acid chloride, alcohols from Grignard reaction

Acid chloride, alcohols from alcoholysis

Acid chloride, alcohols from carboxylic acids

Acid chloride, alcohols from hydrolysis

Acid chloride, alcohols from naming

Acid chloride, alcohols from nucleophilic acyl substitution

Acid chloride, alcohols from reaction with Grignard reagents

Acid chloride, alcohols from reaction with amines

Acid chloride, alcohols from reaction with ammonia

Acid chloride, alcohols from reaction with carboxylate ions

Acid chloride, alcohols from reaction with water

Acid chloride, alcohols from reactions

Acid chloride, alcohols from reduction

Chlorides alcohols

Chlorides, from alcohols

Lithium aluminum hydride alcohol synthesis from acid chlorides

© 2024 chempedia.info