Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohols Solutions

C, b.p. 156 C. The most important of the terpene hydrocarbons. It is found in most essential oils derived from the Coniferae, and is the main constituent of turpentine oil. Contains two asymmetric carbon atoms. The (- -)-form is easily obtained in a pure state by fractionation of Greek turpentine oil, of which it constitutes 95%. Pinene may be separated from turpentine oil in the form of its crystalline nitrosochloride, CioHigClNO, from which the ( + )-form may be recovered by boiling with aniline in alcoholic solution. When heated under pressure at 250-270 C, a-pinene is converted into dipentene. It can be reduced by hydrogen in the presence of a catalyst to form... [Pg.314]

Piperitone is of considerable technical im portance. It is a colourless oil of a pleasant peppermint-like smell. (-)-Piperilone has b.p. 109-5-110-5 C/I5mm. Piperitone yields thymol on oxidation with FeCl. On reduction with hydrogen in presence of a nickel catalyst it yields menthone. On reduction with sodium in alcoholic solution all forms of piperitone yield racemic menthols and womenthols together with some racemic a-phel)andrene. [Pg.316]

Prolamines. Proteins insoluble in water, but dissolving in aqueous alcohol solutions. Found in the seeds of cereals. [Pg.332]

Colourless crystals m.p. 122 C. It is prepared by reducing an alcoholic solution of xanthone with sodium amalgam. [Pg.428]

Courtney S H, Kim S K, Canonica S and Fleming G R 1986 Rotational diffusion of stiibene in alkane and alcohol solutions J. Chem. See. Faraday Trans. 2 82 2065-72... [Pg.867]

Molisch s Test. Dissolve about 01 g. of the carbohydrate in z ml. of water (for starch use 2 ml. of starch solution ), add 2-3 drops of a 1 % alcoholic solution of i-naphthol (ignoring traces of the latter precipitated by the water) and then carefully pour 2 ml. of cone. H2SO4 down the side of the test-tube so that it forms a heavy layer at the bottom. A deep violet coloration is produced where the liquids meet. This coloration is due apparently to the formation of an unstable condensation product of i-naphthol with furfural (an aldehyde produced by the dehydration of the carbohydrate). [Pg.367]

Note. PRIMARY ALIPHATIC AMINES. The lower amines are gases or low-boiling liquids (b.ps. CHjNH, 7 CiHjNH, 17 CH,(CH2,>,NH 49 (CHg)jCHNHa, 34 ) but may be encountered in aqueous or alcoholic solution, or as their crystalline salts. They are best identified as their benzoyl, or toluene-/>-sulphonyl derivatives (c/. (C) above), and as their picrates when these are not too soluble. This applies also to benzylamine, CjHsCHjNH, b.p. 185 also to ethylenediamine, usually encountered as the hydrate, NHj (CHj)j NH2,HjO, b.p. 116 , for which a moderate excess of the reagent should be used to obtain the di-acyl derivative. (M.ps., pp. 55 55 )... [Pg.375]

The use of a ternary mixture in the drying of a liquid (ethyl alcohol) has been described in Section 1,5 the following is an example of its application to the drying of a solid. Laevulose (fructose) is dissolved in warm absolute ethyl alcohol, benzene is added, and the mixture is fractionated. A ternary mixture, alcohol-benzene-water, b.p. 64°, distils first, and then the binary mixture, benzene-alcohol, b.p. 68-3°. The residual, dry alcoholic solution is partially distilled and the concentrated solution is allowed to crystallise the anhydrous sugar separates. [Pg.144]

A special apparatus (Fig. Ill, 40,1) renders the preparation of iodides from alcohols a very simple operation. The special features of the apparatus are —(i) a wide bored (3-4 mm.) stopcock A which considerably reduces the danger of crystallisation in the bore of the tap of the iodine from the hot alcoholic solution (ii) a reservoir B for the solid iodine and possessing a capacity sufficiently large to hold all the alkyl iodide produced (iii) a wide tube C which permits the alcohol vapour fix)m the flask D to pass rapidly into the reservoir B, thus ensuring that the iodine is dissolved by alcohol which is almost at the boiling point. An improved apparatus is shown in Fig. Ill, 40, 2, a and b here a... [Pg.285]

Methyl Iodide. Use 38 g. (48 ml.) of methyl alcohol, 8-27 g. of purified red phosphorus and 127 g. of io ne. Cover the iodine completely with the hot methyl alcohol before running the alcoholic solution into the boiling alcohol - phosphorus mixture. B.p. 42-42-5°. [Pg.287]

S-Alkyl-iso-thiuronium picrates. Alkyl bromides or iodides react with thiourea in alcoholic solution to produce S-alkyl-iso-thiuronium salts, which yield picrates of sharp melting point ... [Pg.291]

Picrates of p-naphthyl alkyl ethers. Alkyl halides react with the sodium or potassium derivative of p-naphthol in alcoholic solution to yield the corresponding alkyl p-naphthyl ethers (which are usually low m.p. solids) and the latter are converted by alcoholic picric acid into the crystalline picrates ... [Pg.292]

Alkyl thiocyanates. From potassium or sodium thiocyanate and the alkyl halide in alcoholic solution, for example ... [Pg.302]

Place 50 g. of anhydrous calcium chloride and 260 g. (323 ml.) of rectified spirit (95 per cent, ethyl alcohol) in a 1-litre narrow neck bottle, and cool the mixture to 8° or below by immersion in ice water. Introduce slowly 125 g. (155 ml.) of freshly distilled acetaldehyde, b.p. 20-22° (Section 111,65) down the sides of the bottle so that it forms a layer on the alcoholic solution. Close the bottle with a tightly fitting cork and shake vigorously for 3-4 minutes a considerable rise in temperature occurs so that the stopper must be held well down to prevent the volatilisation of the acetaldehyde. Allow the stoppered bottle to stand for 24-30 hours with intermittent shaking. (After 1-2 hours the mixture separates into two layers.) Separate the upper layer ca. 320 g.) and wash it three times with 80 ml. portions of water. Dry for several hours over 6 g. of anhydrous potassium carbonate and fractionate with an efficient column (compare Section 11,17). Collect the fraction, b.p. 101-104°, as pure acetal. The yield is 200 g. [Pg.327]

Add 0 1 g. of the aldehyde in 5 ml. of 50 per cent, ethanol to 2 ml. of a 10 per cent, or saturated alcoholic solution of dimedone. If a precipitate does not form immediately, warm for 5 mintues if the solution is still clear at the end of this period, add hot water until the mixture is just cloudy and cool to about 6°. Collect the crystalline derivative and recrystallise it from methanol - water or ethanol - water. [Pg.333]

It is frequently advisable in the routine examination of an ester, and before any derivatives are considered, to determine the saponification equivalent of the ester. In order to ensure that complete hydrolysis takes place in a comparatively short time, the quantitative saponi fication is conducted with a standardised alcoholic solution of caustic alkali—preferably potassium hydroxide since the potassium salts of organic acids are usuaUy more soluble than the sodium salts. A knowledge of the b.p. and the saponification equivalent of the unknown ester would provide the basis for a fairly accurate approximation of the size of the ester molecule. It must, however, be borne in mind that certain structures may effect the values of the equivalent thus aliphatic halo genated esters may consume alkali because of hydrolysis of part of the halogen during the determination, nitro esters may be reduced by the alkaline hydrolysis medium, etc. [Pg.392]

Mercaptans (or thio-alcohols or thiols), the sulphur analogues of the alcohols, were formerly prepared by the interaction of an alkyl halide and sodium hydrosulphide in alcoholic solution ... [Pg.496]

Picrates of aromatic ethers. Most phenohc ethers react with picric acid in chloroform or alcoholic solution to yield crystalUne picrates (compare At oTnatic Hydrocarbons, Section IV,9,1). [Pg.672]

Knoevenagel reaction. The condensation of an aldehyde with an active methylene compound (usually malonic acid or its derivatives) in the presence of a base is generally called the Knoevenagel reaction. Knoevenagel found that condensations between aldehydes and malonic acid are effectively catalysed by ammonia and by primary and secondary amines in alcoholic solution of the organic amines piperidine was regarded as the best catalyst. [Pg.710]

Furfural undergoes condensation to furoin under the catal3rtic influence of cyanide ions in aqueous alcohol solution (compare Benzoin, Section IV,125) ... [Pg.835]

Potassium and sodium borohydride show greater selectivity in action than lithium aluminium hydride thus ketones or aldehydes may be reduced to alcohols whilst the cyano, nitro, amido and carbalkoxy groups remain unaffected. Furthermore, the reagent may be used in aqueous or aqueous-alcoholic solution. One simple application of its use will be described, viz., the reduction of m-nitrobenzaldehyde to m-nitrobenzyl alcohol ... [Pg.881]


See other pages where Alcohols Solutions is mentioned: [Pg.33]    [Pg.83]    [Pg.167]    [Pg.180]    [Pg.208]    [Pg.278]    [Pg.324]    [Pg.328]    [Pg.337]    [Pg.351]    [Pg.388]    [Pg.388]    [Pg.391]    [Pg.398]    [Pg.83]    [Pg.339]    [Pg.2669]    [Pg.368]    [Pg.250]    [Pg.326]    [Pg.446]    [Pg.470]    [Pg.474]    [Pg.749]    [Pg.910]   
See also in sourсe #XX -- [ Pg.201 , Pg.306 ]




SEARCH



2- benzyl alcohol buffer solution

Alcohol, aqueous solutions

Alcohol, aqueous solutions methyl

Alcohol, denatured solutions

Alcohol, industrial, solutions

Alcoholic potassium hydroxide solution

Alcoholic silver nitrate solution

Alcoholic solutions

Alcoholic solutions

Alcoholic solutions generation

Alcoholic solutions, essential oils

Alcohols from aqueous solution

Alcohols methoxide solutions

Alcohols solution-phase acidities

Anion alcoholic solutions

Aqueous solutions oxyethylated fatty alcohols

Critical solution temperature in alcohols

Dilute alcoholic solutions

Dilute alcoholic solutions irradiation

Emulsion alcohol solution

For buffer solutions in alcohol-water solvents

Hydrocortisone solution, alcoholic

Isopropyl alcohol solutions

Methyl alcoholic potassium hydroxide solution

Polyvinyl alcohol solution viscosity

Sodium alcoholate solutions

Surface adsorption alkyl alcohol solutions

Surface tension oxyethylated alcohol solutions

Tinctures alcoholic solutions

© 2024 chempedia.info