Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetic acid, production Monsanto process

Scheme 30 Proposed catalytic cycle for methanol carbonylation to acetic acid (Monsanto process). Acyl-iodide reductive elimination from a Rh(ni) center is the key step toward the product formation... Scheme 30 Proposed catalytic cycle for methanol carbonylation to acetic acid (Monsanto process). Acyl-iodide reductive elimination from a Rh(ni) center is the key step toward the product formation...
In the second one, methyltetrahydrofolate (MeTHF) is carbonylated, the product being a thioester, acetyl coenzyme A (CoA being a thiol). This reaction resembles methanol carbonylation to acetic acid (Monsanto process, see Chap. 18) ... [Pg.452]

Monsanto acetic acid A process for making acetic acid by carbonylation of methanol, catalyzed by rhodium iodide. Operated by BP. A variation of this process, the low water process, used added Group 1 metal iodides such as lithium iodide to enhance the productivity this was practiced by Celenese and by Daicel. [Pg.243]

All known ACS enzymes are bifunctional in that they possess a C cluster with COdFI activity in addition to an A cluster (the ACS active site. Scheme 9). In the enzymes, a CO tunnel is described through which GO can pass directly from the C cluster, where it is generated from CO2, to the A cluster, where acetyl GoA synthesis takes place. Again, two mechanisms were proposed that differ in the order of binding events and redox states involved. In essence, however, GO binds to an Ni-GHs species, followed by insertion and generation of an Ni-acetyl species, which upon reaction with GoA liberates the acetyl GoA product. It is interesting to note that methylation of Ni occurs by reaction with methyl cobalamin (Scheme 7). In M. thermoacetica, the cobalamin is the cofactor for a rather unique protein called the corrinoid iron sulfur protein (GFeSP). The above process, even if mechanistic details still remain in question, resembles the industrial Monsanto acetic acid synthesis process (Scheme 9, bottom). In this case, however, the reaction is catalyzed by a low-valent Rh catalyst. [Pg.890]

This process may be competitive with butane oxidation (see Hydrocarbon oxidation) which produces a spectmm of products (138), but neither process is competitive with the process from synthesis gas practiced by Monsanto (139) and BASF (140) which have been used in 90% of the new acetic acid capacity added since 1975. [Pg.374]

Acetic acid is presently produced on a very large scale. World-wide production in 1977 was approximately 2,500,000 tons. The Monsanto process has now been licensed world-wide, and production from these plants when constructed will amount to more than 1,000,000 tons annually. [Pg.256]

It is now nearly 40 years since the introduction by Monsanto of a rhodium-catalysed process for the production of acetic acid by carbonylation of methanol [1]. The so-called Monsanto process became the dominant method for manufacture of acetic acid and is one of the most successful examples of the commercial application of homogeneous catalysis. The rhodium-catalysed process was preceded by a cobalt-based system developed by BASF [2,3], which suffered from significantly lower selectivity and the necessity for much harsher conditions of temperature and pressure. Although the rhodium-catalysed system has much better activity and selectivity, the search has continued in recent years for new catalysts which improve efficiency even further. The strategies employed have involved either modifications to the rhodium-based system or the replacement of rhodium by another metal, in particular iridium. This chapter will describe some of the important recent advances in both rhodium- and iridium-catalysed methanol carbonylation. Particular emphasis will be placed on the fundamental organometallic chemistry and mechanistic understanding of these processes. [Pg.187]

In many applications acetic acid is used as the anhydride and the synthesis of the latter is therefore equally important. In the 1970 s Halcon (now Eastman) and Hoechst (now Celanese) developed a process for the conversion of methyl acetate and carbon monoxide to acetic anhydride. The process has been on stream since 1983 and with an annual production of several 100,000 tons, together with some 10-20% acetic acid. The reaction is carried out under similar conditions as the Monsanto process, and also uses methyl iodide as the "activator" for the methyl group. [Pg.116]

In 1970, the first rhodium-based acetic acid production unit went on stream in Texas City, with an annual capacity of 150 000 tons. Since that time, the Monsanto process has formed the basis for most new capacities such that, in 1991, it was responsible for about 55% of the total acetic acid capacity worldwide. In 1986, B.P. Chemicals acquired the exclusive licensing rights to the Monsanto process, and 10 years later announced its own carbonylation iridium/ruthenium/iodide system [7, 8] (Cativa ). Details of this process, from the viewpoint of its reactivity and mechanism, are provided later in this chapter. A comparison will also be made between the iridium- and rhodium-based processes. Notably, as the iridium system is more stable than its rhodium counterpart, a lower water content can be adopted which, in turn, leads to higher reaction rates, a reduced formation of byproducts, and a better yield on CO. [Pg.196]

Another way to produce acetic acid is based on a carbonylation of methanol in the so called Monsanto process, which is the dominant technology for the production of acetic acid today [15]. Acetic acid then is converted to VAM by addition of ethylene to acetic acid in the gas phase using heterogeneous catalysts usually based on palladium, cadmium, gold and its alloys (vinylation reaction 3 in Fig. 2) [16] supported on silica structures. [Pg.140]

The direct carbonylation of methanol yielding acetic acid, the Monsanto process, represents the best route for acetic acid. Carbonylation of methyl acetate, obtained from methanol and acetic acid, gives acetic anhydride, a technology commercialized by Tennessee Eastman (22). It is noteworthy that this process is based on coal derived synthesis gas to give as the final product cellulose acetate. A combination of Monsanto and Tennessee Eastman technology opens the door for the combined synthesis of acetic acid and acetic anhydride. [Pg.8]

BASF operates a commercial process with a Co-1 catalyst at 210 C and 10000 psig (JU). The main product is acetic acid with rates and selectivities of 1-4 M/hr and 90-93. In the late 1960s, Monsanto developed a Rh-I catalyst that operates at significantly lower pressure 18). In their process, the reaction is carried out at 180-200 C and 500 psig with acetic acid rates and selec-uivities of 10-30 M/hr and 95-99%. [Pg.128]

Acetic Acid. Carbonylation of methanol is the most important reaction in the production of acetic acid.189-192 BASF developed a process applying C0I2 in the liquid phase under extreme reaction conditions (250°C, 650 atm).122 193 The Monsanto low-pressure process, in contrast, uses a more active catalyst combining a rhodium compound, a phosphine, and an iodine compound (in the form of HI, Mel, or T2).122 194—196 Methanol diluted with water to suppress the formation of methyl acetate is reacted under mild conditions (150-200°C, 33-65 atm) to produce acetic acid with 99% selectivity at 100% conversion. [Pg.386]

Acetic Acid. Although at the time of this writing Monsanto s Rh-catalyzed methanol carbonylation (see Section 7.2.4) is the predominant process in the manufacture of acetic acid, providing about 95% of the world s production, some acetic acid is still produced by the air oxidation of n-butane or light naphtha. n-Butane is used mainly in the United States, whereas light naphtha fractions from petroleum refining are the main feedstock in Europe. [Pg.504]

Whatever the source of synthesis gas, it is the starting point for many industrial chemicals. Some examples to be discussed are the hydroformylation process for converting alkenes to aldehydes and alcohols, the Monsanto process for the production of acetic acid from methanol, the synthesis of methanol from methane, and the preparation of gasoline by the Mobil and Fischer-Tropsch methods. [Pg.891]

As mentioned in the previous section, the carbonylation of methanol to acetic acid is an important industrial process. Whereas the [Co2(CO)s]-catalyzed, iodide-promoted reaction developed by BASF requires pressures of the order of 50 MPa, the Monsanto rhodium-catalyzed synthesis, which is also iodide promoted and which was discovered by Roth and co-workers, can be operated even at normal pressure, though somewhat higher pressures are used in the production units.4,1-413 The rhodium-catalyzed process gives a methanol conversion to acetic acid of 99%, against 90% for the cobalt reaction. The mechanism of the Monsanto process has been studied by Forster.414 The anionic complex m-[RhI2(CO)2]- (95) initiates the catalytic cycle, which is shown in Scheme 26. [Pg.272]

The major conventional processes for the production of acetic acid include the carbonylation of methanol (originally developed by Monsanto, and now carried out by several companies, such as Celanese-ACID OPTIMIZATION, BP-CATIVA, etc.), the liquid-phase oxidation of acetaldehyde, still carried out by a few companies, and the liquid-phase oxidation of n-butane and naphtha. More recent developments include the gas-phase oxidation of ethylene, developed by Showa Denko K.K., and the liquid-phase oxidation of butenes, developed by Wacker [2a],... [Pg.290]

Acetic acid (CH3COOH) is a bulk commodity chemical with a world production of about 3.1 x 106 Mg/year, a demand increasing at a rate of +2.6% per year and a market price of US 0.44-0.47 per kg (Anon., 2001a). It is obtained primarily by the Monsanto or methanol carbonylation process, in which carbon monoxide reacts with methanol under the influence of a rhodium complex catalyst at 180°C and pressures of 30-40 bar, and secondarily by the oxidation of ethanol (Backus et al., 2003). The acetic fermentation route is limited to the food market and leads to vinegar production from several raw materials (e.g., apples, malt, grapes, grain, wines, and so on). [Pg.326]

As seen from the above, conventional uses of methanol cover a wide range of products which in turn find application in a very broad cross-section of industrial and consumer goods. New end uses have continued to develop and spur the growth of methanol production. One such development is the Monsanto low pressure process that carbonylates methanol to acetic acid (6). Essentially all new acetic acid capacity now being installed is based on Monsanto technology. By 1981, eleven plants converting methanol to acetic acid are scheduled to be on stream. At capacity they will consume over 300 million gallons of methanol. [Pg.33]

Flash distillation of the product where very high vacuums are applied at moderate temperatures so the solvents and products vaporize, which are collected and condensed in a condenser, leaving the catalyst behind in the vessel. In the Monsanto acetic acid process, the catalyst rhodium iodide is left behind in the reboiler once the products are flashed off (see Section 4.9). [Pg.46]

A block diagram of the Monsanto process for acetic acid production is shown in Fig. 4.13. The process flow sheet is simple since the reaction conditions are mild (180°C/30-40 bar) when compared to the BASF process (250°C/700 bar). More than 40% of world s acetic acid is made by the Monsanto process. One of the problems with this process is the continuous loss of iodine. A block diagram of the Eastman process for acetic anhydride production is shown in Fig. 4.14. The process generates minimum waste, and all process tars are destroyed to recover iodine and rhodium. [Pg.77]

Figure 4.13 Simplified block diagram of the Monsanto process for the acetic acid production. Figure 4.13 Simplified block diagram of the Monsanto process for the acetic acid production.
Mankind has produced acetic acid for many thousand years but the traditional and green fermentation methods cannot provide the large amounts of acetic acid that are required by today s society. As early as 1960 a 100% atom efficient cobalt-catalyzed industrial synthesis of acetic acid was introduced by BASF, shortly afterwards followed by the Monsanto rhodium-catalyzed low-pressure acetic acid process (Scheme 5.36) the name explains one of the advantages of the rhodium-catalyzed process over the cobalt-catalyzed one [61, 67]. These processes are rather similar and consist of two catalytic cycles. An activation of methanol as methyl iodide, which is catalytic, since the HI is recaptured by hydrolysis of acetyl iodide to the final product after its release from the transition metal catalyst, starts the process. The transition metal catalyst reacts with methyl iodide in an oxidative addition, then catalyzes the carbonylation via a migration of the methyl group, the "insertion reaction". Subsequent reductive elimination releases the acetyl iodide. While both processes are, on paper, 100%... [Pg.246]

AO Plus [Acid Optimisation Plus] A process for making acetic acid by carbonylating methanol. Based on the Monsanto Acetic Acid process, but an improved catalyst (rhodium with lithium iodide) permits operation at lower levels of water. Developed by Celanese in the 1980s and operated by that company in Clear Lake, TX. Residual iodide in the product is removed by the Silverguard process. [Pg.21]

As is the case of hydroformylation, the use of rhodium allows much milder conditions to be used. Such a process was started by Monsanto in 1966 it operates at 30-60 bar and 150-200°C and is now the world s largest process for acetic acid production (>5 million tons per year). In view of the corrosive nature of the reagents, Hastalloy or zirconium reactors have to be used. [Pg.1259]

As well as being the product, acetic acid also acts as the major solvent component for the Monsanto process. This means that the methanol feedstock is largely esterified into methyl acetate (Equation 13) under process conditions ... [Pg.122]

As in the original Monsanto process involving homogeneous catalysis and catalyst recycle, the product is removed as a liquid, because the gas phase of a stripping reactor would contain a low concentration of the high-boiling acetic acid. In the Acetica process, no catalyst recycle is needed, as the solid catalyst stays in the reactor. [Pg.117]

Using the catalyst system known from the Monsanto process, Dumas et at. have been able to direct the reaction towards ethanol formation using syngas mixtures extremely rich in hydrogen [87]. As is shown in Table XII, no acetic acid and only minor amounts of acetates are formed at an H3/CO ratio of 60. Ethanol and acetaldehyde aie the main products along with considerable amounts of methyl ethyl ether. Unfortunately, the Dumas c/ at. based the yields and conversion on carbon monoxide and not on methanol. This makes the data of this interesting process difficult to compare with those of other catalyst systems. [Pg.130]

The hydrocarboxylation reactions discussed above have been proposed to involve direct addition of water to the metal center prior to elimination of the product, analogous to the oxidative addition of hydrogen to a metal center at the end of a hydroformylation catalytic cycle. Another class of hydrocarboxylation reactions is more analogous to the haUde-promoted Monsanto acetic acid process, where one has a reductive elimination of an acyl halide species that is rapidly hydrolyzed with free water to generate the carboxylic acid and HX. [Pg.680]

An important modern example of homogeneous catalysis is provided by the Monsanto process in which the rhodium compound 1.4 catalyses a reaction, resulting in the addition of carbon monoxide to methanol to form ethanoic acid (acetic acid). Another well-known process is hydro-formylation, in which the reaction of carbon monoxide and hydrogen with an alkene, RCH=CH2, forms an aldehyde, RCH2CH2CHO. Certain cobalt or rhodium compounds are effective catalysts for this reaction. In addition to catalytic applications, non-catalytic stoichiometric reactions of transition elements now play a major role in the production of fine organic chemicals and pharmaceuticals. [Pg.15]


See other pages where Acetic acid, production Monsanto process is mentioned: [Pg.70]    [Pg.127]    [Pg.344]    [Pg.216]    [Pg.807]    [Pg.265]    [Pg.229]    [Pg.147]    [Pg.801]    [Pg.73]    [Pg.21]    [Pg.412]    [Pg.480]    [Pg.190]    [Pg.2]    [Pg.166]    [Pg.324]   


SEARCH



Acetate production

Acetic acid Monsanto process

Acetic acid process

Acetic acid production

Acetic processing

Acid process

Monsanto

Monsanto acetic acid production

Monsanto process

Monsanto product

© 2024 chempedia.info