Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemicals Acetaldehyde

AR Bujold, J Riepl, and Y Sakuma, Acetaldehyde, Chemical Economics Handbook, Product Review, SRI Consulting, Menlo Park, CA (1992). [Pg.195]

Outside of carbon monoxide for which the toxicity is already well-known, five types of organic chemical compounds capable of being emitted by vehicles will be the focus of our particular attention these are benzene, 1-3 butadiene, formaldehyde, acetaldehyde and polynuclear aromatic hydrocarbons, PNA, taken as a whole. Among the latter, two, like benzo [a] pyrene, are viewed as carcinogens. Benzene is considered here not as a motor fuel component emitted by evaporation, but because of its presence in exhaust gas (see Figure 5.25). [Pg.260]

More precisely, the rate of ozone formation depends closely on the chemical nature of the hydrocarbons present in the atmosphere. A reactivity scale has been proposed by Lowi and Carter (1990) and is largely utilized today in ozone prediction models. Thus the values indicated in Table 5.26 express the potential ozone formation as O3 formed per gram of organic material initially present. The most reactive compounds are light olefins, cycloparaffins, substituted aromatic hydrocarbons notably the xylenes, formaldehyde and acetaldehyde. Inversely, normal or substituted paraffins. [Pg.261]

Among the other chemicals prepared from ethylene are ethanol and acetaldehyde... [Pg.269]

Not so for synthesis in the chemical industry where a compound must be prepared not only on a large scale but at low cost There is a pronounced bias toward reactants and reagents that are both abundant and inexpensive The oxidizing agent of choice for example in the chemical industry is O2 and extensive research has been devoted to develop mg catalysts for preparing various compounds by air oxidation of readily available starting materials To illustrate air and ethylene are the reactants for the industrial preparation of both acetaldehyde and ethylene oxide Which of the two products is ob tamed depends on the catalyst employed... [Pg.644]

From Acetylene. Although acetaldehyde has been produced commercially by the hydration of acetylene since 1916, this procedure has been almost completely replaced by the direct oxidation of ethylene. In the hydration process, high purity acetylene under a pressure of 103.4 kPa (15 psi) is passed into a vertical reactor containing a mercury catalyst dissolved in 18—25% sulfuric acid at 70—90°C (see Acetylene-DERIVED chemicals). [Pg.52]

This process comprises passing synthesis gas over 5% rhodium on Si02 at 300°C and 2.0 MPa (20 atm). Principal coproducts are acetaldehyde, 24% acetic acid, 20% and ethanol, 16%. Although interest in new routes to acetaldehyde has fallen as a result of the reduced demand for this chemical, one possible new route to both acetaldehyde and ethanol is the reductive carbonylation of methanol (85). [Pg.53]

Chemical Safety Data Sheet SD-43, Properties and Essential Information for Safe Handling and Use of Acetaldehyde Manufacturiug Chemists Association, Inc., Washington, D.C., 1952. [Pg.55]

Acetaldehyde, 601.500H," Chemical Economics Handbook, SRI International, Menlo Park, Calif., 1989. [Pg.55]

Because of its relatively high, price, there have been continuing efforts to replace acetylene in its major appHcations with cheaper raw materials. Such efforts have been successful, particularly in the United States, where ethylene has displaced acetylene as raw material for acetaldehyde, acetic acid, vinyl acetate, and chlorinated solvents. Only a few percent of U.S. vinyl chloride production is still based on acetylene. Propjiene has replaced acetylene as feed for acrylates and acrylonitrile. Even some recent production of traditional Reppe acetylene chemicals, such as butanediol and butyrolactone, is based on new raw materials. [Pg.102]

Aldehydes fiad the most widespread use as chemical iatermediates. The production of acetaldehyde, propionaldehyde, and butyraldehyde as precursors of the corresponding alcohols and acids are examples. The aldehydes of low molecular weight are also condensed in an aldol reaction to form derivatives which are important intermediates for the plasticizer industry (see Plasticizers). As mentioned earlier, 2-ethylhexanol, produced from butyraldehyde, is used in the manufacture of di(2-ethylhexyl) phthalate [117-87-7]. Aldehydes are also used as intermediates for the manufacture of solvents (alcohols and ethers), resins, and dyes. Isobutyraldehyde is used as an intermediate for production of primary solvents and mbber antioxidants (see Antioxidaisits). Fatty aldehydes Cg—used in nearly all perfume types and aromas (see Perfumes). Polymers and copolymers of aldehydes exist and are of commercial significance. [Pg.474]

Production of Eastman s entire acetic anhydride requirement from coal allows a reduction of 190,000 m /yr (1.2 million barrels/yr) in the amount of petroleum used for production of Eastman chemicals. Now virtually all of Eastman s acetyl products are made in part from coal-based feedstocks. Before the technology was introduced, these chemicals had been made from petroleum-based acetaldehyde. Reduced dependence on petroleum, much of which must be obtained from foreign sources, is important to maintain a strong domestic chemical industry. [Pg.167]

Commercial VPO of propane—butane mixtures was in operation at Celanese Chemical Co. plants in Texas and/or Canada from the 1940s to the 1970s. The principal primary products were acetaldehyde, formaldehyde, methanol, and acetone. The process was mn at low hydrocarbon conversion (3—10%) and a pressure in excess of 790 kPa (7.8 atm). These operations were discontinued because of various economic factors, mainly the energy-intensive purification system required to separate the complex product streams. [Pg.341]

Chemical Uses. In Europe, products such as ethylene, acetaldehyde, acetic acid, acetone, butadiene, and isoprene have been manufactured from acetylene at one time. Wartime shortages or raw material restrictions were the basis for the choice of process. Coking coal was readily available in Europe and acetylene was easily accessible via calcium carbide. [Pg.393]

Other possible chemical synthesis routes for lactic acid include base-cataly2ed degradation of sugars oxidation of propylene glycol reaction of acetaldehyde, carbon monoxide, and water at elevated temperatures and pressures hydrolysis of chloropropionic acid (prepared by chlorination of propionic acid) nitric acid oxidation of propylene etc. None of these routes has led to a technically and economically viable process (6). [Pg.513]

The fermentation-derived food-grade product is sold in 50, 80, and 88% concentrations the other grades are available in 50 and 88% concentrations. The food-grade product meets the Vood Chemicals Codex III and the pharmaceutical grade meets the FCC and the United States Pharmacopoeia XK specifications (7). Other lactic acid derivatives such as salts and esters are also available in weU-estabhshed product specifications. Standard analytical methods such as titration and Hquid chromatography can be used to determine lactic acid, and other gravimetric and specific tests are used to detect impurities for the product specifications. A standard titration method neutralizes the acid with sodium hydroxide and then back-titrates the acid. An older standard quantitative method for determination of lactic acid was based on oxidation by potassium permanganate to acetaldehyde, which is absorbed in sodium bisulfite and titrated iodometricaHy. [Pg.515]

In this thiamine pyrophosphate-mediated process, ben2aldehyde (29), added to fermenting yeast, reacts with acetaldehyde (qv) (30), generated from glucose by the biocatalyst, to yield (R)-l-phen5l-l-hydroxy-2-propanone (31). The en2ymatically induced chiral center of (31) helps in the asymmetric reductive (chemical) condensation with methylamine to yield (lR,23)-ephedrine [299-42-3] (32). Substituted ben2aldehyde derivatives react in the same manner (80). [Pg.312]

In addition to these principal commercial uses of molybdenum catalysts, there is great research interest in molybdenum oxides, often supported on siHca, ie, MoO —Si02, as partial oxidation catalysts for such processes as methane-to-methanol or methane-to-formaldehyde (80). Both O2 and N2O have been used as oxidants, and photochemical activation of the MoO catalyst has been reported (81). The research is driven by the increased use of natural gas as a feedstock for Hquid fuels and chemicals (82). Various heteropolymolybdates (83), MoO.-containing ultrastable Y-zeoHtes (84), and certain mixed metal molybdates, eg, MnMoO Ee2(MoO)2, photoactivated CuMoO, and ZnMoO, have also been studied as partial oxidation catalysts for methane conversion to methanol or formaldehyde (80) and for the oxidation of C-4-hydrocarbons to maleic anhydride (85). Heteropolymolybdates have also been shown to effect ethylene (qv) conversion to acetaldehyde (qv) in a possible replacement for the Wacker process. [Pg.477]

Partial oxidation of natural gas or a fuel oil using oxygen may be used to form acetylene, ethylene (qv) and propylene (qv). The ethylene in turn may be partially oxidi2ed to form ethylene oxide (qv) via advantages (/) and (5). A few of the other chemicals produced using oxygen because of advantages (/) and (5) are vinyl acetate, vinyl chloride, perchloroethylene, acetaldehyde (qv), formaldehyde (qv), phthaHc anhydride, phenol (qv), alcohols, nitric acid (qv), and acryhc acid. [Pg.481]

Acetaldehyde can be used as an oxidation-promoter in place of bromine. The absence of bromine means that titanium metallurgy is not required. Eastman Chemical Co. has used such a process, with cobalt as the only catalyst metal. In that process, acetaldehyde is converted to acetic acid at the rate of 0.55—1.1 kg/kg of terephthahc acid produced. The acetic acid is recycled as the solvent and can be isolated as a by-product. Reaction temperatures can be low, 120—140°C, and residence times tend to be high, with values of two hours or more (55). Recovery of dry terephthahc acid follows steps similar to those in the Amoco process. Eastman has abandoned this process in favor of a bromine promoter (56). Another oxidation promoter which has been used is paraldehyde (57), employed by Toray Industries. This leads to the coproduction of acetic acid. 2-Butanone has been used by Mobil Chemical Co. (58). [Pg.488]

Chevron Chemical Co. began commercial production of isophthahc acid in 1956. The sulfur-based oxidation of / -xylene in aqueous ammonia at about 320°C and 7,000—14,000 kPa produced the amide. This amide was then hydrolyzed with sulfuric acid to produce isophthahc acid at about 98% purity. Arco Chemical Co. began production in 1970 using air oxidation in acetic acid catalyzed by a cobalt salt and promoted by acetaldehyde at 100—150°C and 1400—2800 kPa (14—28 atm). The cmde isophthahc acid was dissolved and recrystallized to yield a product exceeding 99% purity. The Arco technology was not competitive and the plant was shut down in 1974. [Pg.493]

Propylene oxide is a colorless, low hoiling (34.2°C) liquid. Table 1 lists general physical properties Table 2 provides equations for temperature variation on some thermodynamic functions. Vapor—liquid equilibrium data for binary mixtures of propylene oxide and other chemicals of commercial importance ate available. References for binary mixtures include 1,2-propanediol (14), water (7,8,15), 1,2-dichloropropane [78-87-5] (16), 2-propanol [67-63-0] (17), 2-methyl-2-pentene [625-27-4] (18), methyl formate [107-31-3] (19), acetaldehyde [75-07-0] (17), methanol [67-56-1] (20), ptopanal [123-38-6] (16), 1-phenylethanol [60-12-8] (21), and / /f-butanol [75-65-0] (22,23). [Pg.133]

The poly(vinyl acetal) prepared from acetaldehyde was developed in the early 1940s by Shawinigan Chemicals, Ltd., of Canada and sold under the trade name Alvar. Early uses included injection-molded articles, coatings for paper and textiles, and replacement for shellac. Production peaked in the early 1950s and then decreased as a result of competition from less expensive resins such as poly(vinyl chloride) (see Vinyl polymers, poly(vinyl chloride)). [Pg.449]

Hydrolysis of vinyl acetate is catalyzed by acidic and basic catalysts to form acetic acid and vinyl alcohol which rapidly tautomerizes to acetaldehyde. This rate of hydrolysis of vinyl acetate is 1000 times that of its saturated analogue, ethyl acetate, ia alkaline media (15). The rate of hydrolysis is minimal at pH 4.44 (16). Other chemical reactions which vinyl acetate may undergo are addition across the double bond, transesterification to other vinyl esters, and oxidation (15—21). [Pg.459]

Analytical results of distilled spidts are expressed either by chemical class or by individual constituent. When these results are expressed by chemical class, the most prevalent constituent within that class is used as the marker, eg, acetic acid for acids, acetaldehyde for aldehydes, and ethyl acetate for esters. Wet chemical methods are employed in the deterrnination of results by chemical class, while more advanced and refined techniques are employed in the deterrnination of individual chemical constituents. [Pg.88]

Ethanol s use as a chemical iatemiediate (Table 8) suffered considerably from its replacement ia the production of acetaldehyde, butyraldehyde, acetic acid, and ethyUiexanol. The switch from the ethanol route to those products has depressed demand for ethanol by more than 300 x 10 L (80 x 10 gal) siace 1970. This decrease reflects newer technologies for the manufacture of acetaldehyde and acetic acid, which is the largest use for acetaldehyde, by direct routes usiag ethylene, butane (173), and methanol. Oxo processes (qv) such as Union Carbide s Low Pressure Oxo process for the production of butanol and ethyUiexanol have totaUy replaced the processes based on acetaldehyde. For example, U.S. consumption of ethanol for acetaldehyde manufacture declined steadily from 50% ia 1962 to 37% ia 1964 and none ia 1990. Butadiene was made from ethanol on a large scale duriag World War II, but this route is no longer competitive with butadiene derived from petroleum operations. [Pg.415]

Chemical Reactivity - Reactivity with Water Reacts slowly to form acetaldehyde. The reaction is generally not hazardous unless occurring in hot water or acids are present Reactivity with Common Materials Acids cause polymeri2ation Stability During Transport Stable but must be segregated from acids Neutralizing Agents for Acids and Caustics.- Not pertinent Polymerization Can polymerize in the presence of acids Inhibitor of Polymerization Dioctylamine Triethanolamine Solid Potassium Hydroxide. [Pg.394]

It is possible to carry out such oxidation processes as the conversion of acetaldehyde to acetic acid, or methyl alcohol to formaldehyde in aluminum plants, thus avoiding boiling anhydrous acids. The metal is especially valuable for handling delicate chemicals, which must not acquire metallic taste or color. For these reasons, aluminum has found extensive use in the food, dairy, brewing and fishing industries. [Pg.93]


See other pages where Chemicals Acetaldehyde is mentioned: [Pg.297]    [Pg.297]    [Pg.34]    [Pg.163]    [Pg.187]    [Pg.37]    [Pg.316]    [Pg.48]    [Pg.53]    [Pg.54]    [Pg.67]    [Pg.69]    [Pg.154]    [Pg.166]    [Pg.498]    [Pg.27]    [Pg.513]    [Pg.461]    [Pg.483]    [Pg.376]    [Pg.201]    [Pg.439]   
See also in sourсe #XX -- [ Pg.199 , Pg.200 ]




SEARCH



© 2024 chempedia.info