Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst partial oxidation

As for MCFC, internal reforming in SOFCs is possible over the anode catalyst partial oxidation reactions and direct oxidation of the fuel have also been found to occur [24—28]. Different concepts for solid oxide fuel cells have been developed over the years. Flat plates have an easier stack possibility, while tubular designs have a smaller sealing problem. Monolithic plates and even single-chamber designs have been considered and investigated for SOFC use [29-31]. [Pg.8]

Oxidation Step. A review of mechanistic studies of partial oxidation of propylene has appeared (58). The oxidation process flow sheet (Fig. 2) shows equipment and typical operating conditions. The reactors are of the fixed-bed shell-and-tube type (about 3—5 mlong and 2.5 cm in diameter) with a molten salt coolant on the shell side. The tubes are packed with catalyst, a small amount of inert material at the top serving as a preheater section for the feed gases. Vaporized propylene is mixed with steam and ak and fed to the first-stage reactor. The feed composition is typically 5—7% propylene, 10—30%... [Pg.152]

Emissions from methanol vehicles are expected to produce lower HC and CO emissions than equivalent gasoline engines. However, methanol combustion produces significant amounts of formaldehyde (qv), a partial oxidation product of methanol. Eormaldehyde is classified as an air toxic and its emissions should be minimized. Eormaldehyde is also very reactive in the atmosphere and contributes to the formation of ozone. Emissions of NO may also pose a problem, especiaHy if the engine mns lean, a regime in which the standard three-way catalyst is not effective for NO reduction. [Pg.195]

Manufacture. Cyanoacetic acid and cyanoacetates are iadustrially produced by the same route as the malonates starting from a sodium chloroacetate solution via a sodium cyanoacetate solution. Cyanoacetic acid is obtained by acidification of the sodium cyanoacetate solution followed by organic solvent extraction and evaporation. Cyanoacetates are obtained by acidification of the sodium cyanoacetate solution and subsequent esterification with the water formed being distilled off. Other processes reported ia the Hterature iavolve the oxidation of partially oxidized propionittile [107-12-0] (59). Higher esters of cyanoacetic acid are usually made through transesterification of methyl cyanoacetate ia the presence of alumiaiumisopropoxide [555-31-7] as a catalyst (60). [Pg.471]

In addition to these principal commercial uses of molybdenum catalysts, there is great research interest in molybdenum oxides, often supported on siHca, ie, MoO —Si02, as partial oxidation catalysts for such processes as methane-to-methanol or methane-to-formaldehyde (80). Both O2 and N2O have been used as oxidants, and photochemical activation of the MoO catalyst has been reported (81). The research is driven by the increased use of natural gas as a feedstock for Hquid fuels and chemicals (82). Various heteropolymolybdates (83), MoO.-containing ultrastable Y-zeoHtes (84), and certain mixed metal molybdates, eg, MnMoO Ee2(MoO)2, photoactivated CuMoO, and ZnMoO, have also been studied as partial oxidation catalysts for methane conversion to methanol or formaldehyde (80) and for the oxidation of C-4-hydrocarbons to maleic anhydride (85). Heteropolymolybdates have also been shown to effect ethylene (qv) conversion to acetaldehyde (qv) in a possible replacement for the Wacker process. [Pg.477]

The saturated, cleaned raw synthesis gas from a Texaco partial oxidation system is first shifted by use of a sulfur resistant catalyst. Steam required for shifting is already present ia the gas by way of the quench operation ia the generator. The shifted gas is then processed for hydrogen sulfide and carbon dioxide removal followed by Hquid nitrogen scmbbiag. [Pg.343]

A significant problem is the dehydrocoupling reaction, which proceeds only at low yields per pass and is accompanied by rapid deactivation of the catalyst. The metathesis step, although chemically feasible, requires that polar contaminants resulting from partial oxidation be removed so that they will not deactivate the metathesis catalyst. In addition, apparendy both cis- and /ra/ j -stilbenes are obtained consequendy, a means of converting the unreactive i j -stilbene to the more reactive trans isomer must also be provided, thus complicating the process. [Pg.190]

Mixed Metal Oxides and Propylene Ammoxidation. The best catalysts for partial oxidation are metal oxides, usually mixed metal oxides. For example, phosphoms—vanadium oxides are used commercially for oxidation of / -butane to give maleic anhydride, and oxides of bismuth and molybdenum with other components are used commercially for oxidation of propylene to give acrolein or acrylonitrile. [Pg.180]

Equation 1 is referred to as the selective reaction, equation 2 is called the nonselective reaction, and equation 3 is termed the consecutive reaction and is considered to proceed via isomerization of ethylene oxide to acetaldehyde, which undergoes rapid total combustion under the conditions present in the reactor. Only silver has been found to effect the selective partial oxidation of ethylene to ethylene oxide. The maximum selectivity for this reaction is considered to be 85.7%, based on mechanistic considerations. The best catalysts used in ethylene oxide production achieve 80—84% selectivity at commercially useful ethylene—oxygen conversion levels (68,69). [Pg.202]

Conventional Transportation Fuels. Synthesis gas produced from coal gasification or from natural gas by partial oxidation or steam reforming can be converted into a variety of transportation fuels, such as gasoline, aviation turbine fuel (see Aviation and other gas turbine fuels), and diesel fuel. A widely known process used for this appHcation is the Eischer-Tropsch process which converts synthesis gas into largely aHphatic hydrocarbons over an iron or cobalt catalyst. The process was operated successfully in Germany during World War II and is being used commercially at the Sasol plants in South Africa. [Pg.277]

Similar approaches are applicable in the chemical industry. For example, maleic anhydride is manufactured by partial oxidation of benzene in a fixed catalyst bed tubular reactor. There is a potential for extremely high temperatures due to thermal runaway if feed ratios are not maintained within safe limits. Catalyst geometry, heat capacity, and partial catalyst deactivation have been used to create a self-regulatory mechanism to prevent excessive temperature (Raghaven, 1992). [Pg.50]

As a chemical compound, methane is not very reactive. It does not react with acids or bases under normal conditions. It reacts, however, with a limited number of reagents such as oxygen and chlorine under specific conditions. For example, it is partially oxidized with a limited amount of oxygen to a carbon monoxide-hydrogen mixture at high temperatures in presence of a catalyst. The mixture (synthesis gas) is an important building block for many chemicals. (Chapter 5). [Pg.30]

This process includes two main sections the burner section with a reaction chamber that does not have a catalyst, and a Claus reactor section. In the burner section, part of the feed containing hydrogen sulfide and some hydrocarbons is burned with a limited amount of air. The two main reactions that occur in this section are the complete oxidation of part of the hydrogen sulfide (feed) to sulfur dioxide and water and the partial oxidation of another part of the hydrogen sulfide to sulfur. The two reactions are exothermic ... [Pg.116]

A new process for the partial oxidation of n-butane to maleic anhydride was developed by DuPont. The important feature of this process is the use of a circulating fluidized bed-reactor. Solids flux in the rizer-reactor is high and the superficial gas velocities are also high, which encounters short residence times usually in seconds. The developed catalyst for this process is based on vanadium phosphorous oxides... [Pg.176]

An alternative route to phthalic anhydride is the partial oxidation of naphthalene. The heat of reaction is — 430 kcal/mol. This reaction can be performed using a promoted V2O5 catalyst on silica, much like that considered in Example 9.1. Suppose In(fik) = 31.6800—19,100/T for the naphthalene oxidation reaction and that the subsequent, complete oxidation of phthalic anhydride follows the kinetics of Problem 9.3. Suppose it is desired to use the same reactor as in Example 9.1 but with a,>, = 53g/ m. Determine values for and T aii that maximize the output of phthalic anhydride from naphthalene. [Pg.346]

MoVW-mixed oxide as a partial oxidation catalyst for methanol to formaldehyde... [Pg.273]

In this paper, the preparation, characterization and the catalytic performance of the Moo.esVoasWo.ioOx-mixed oxide as a partial oxidation catalyst for the methanol to formaldehyde reaction was studied. [Pg.274]

The present work demonstrates that the mixed oxide catalyst with inhomogeneous nanocrystalline MosOu-type oxide with minor amount of M0O3- and Mo02-type material. Thermal treatment of the catalyst shows a better performance in the formation of the crystals and the catalytic activity. The structural analysis suggests that the catalytic performance of the MoVW- mixed oxide catalyst in the partial oxidation of methanol is related to the formation of the M05O14 t3 e mixed oxide. [Pg.276]


See other pages where Catalyst partial oxidation is mentioned: [Pg.178]    [Pg.178]    [Pg.238]    [Pg.259]    [Pg.385]    [Pg.400]    [Pg.421]    [Pg.422]    [Pg.457]    [Pg.481]    [Pg.341]    [Pg.528]    [Pg.180]    [Pg.459]    [Pg.512]    [Pg.515]    [Pg.130]    [Pg.1132]    [Pg.235]    [Pg.1115]    [Pg.177]    [Pg.199]    [Pg.200]    [Pg.99]    [Pg.48]    [Pg.421]    [Pg.63]    [Pg.194]    [Pg.195]    [Pg.273]    [Pg.274]    [Pg.274]    [Pg.617]    [Pg.685]   


SEARCH



Catalyst amount, partial oxidation

Catalyst platinum/palladium partial oxidation

Catalysts changes during partial oxidation

Catalysts for partial oxidation of methane

Catalytic partial oxidation nickel-based catalysts

Hydrocarbon partial oxidation catalysts

Hydrocarbon partial oxidation catalysts decomposition process

Oxidation partial

Partially oxidized

© 2024 chempedia.info