Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Xylene resin

Yamazaki, T. Magnetic toner for electrostatic development from nigrosine base and xylene resin composition. Jpn. Kokai Tokkyo Koho JP 2005157168, 2005 Chem. Abstr. 2005,143, 35126. [Pg.331]

The reinforced plastics involved are glass reinforced polyesters and epoxides, together with the structurally more important carbon fibre reinforced epoxides and p-xylene resins. [Pg.202]

A tackifier is a component to provide initial tackiness to adhesives. The compatibility of the tackifier to the main components is very important to increase the tackiness without degradation of the adhesive mixture. For that purpose, natural resins such as rosin and dammar, modified rosins such as coumarone-indene resin, polymerized rosin, hydrogenated rosin and rosin ester, and polyterpene resin are used. Recently, alkylphenol resins, terpene phenol resins, and xylene resins are out of use because of their hazardous nature inducing sick building syndrome. [Pg.1013]

The Showa Denka Company practices this reaction with a PX—MX mixture (24), whereas Mitsubishi Gas Chemical Company uses high purity MX first to form the dicyanide (25). In both processes, hydrogenation to the diamine follows. y -Xylenediamine is reacted with phosgene to give / -xylene diisocyanate, which is used in urethane resins (26—28). [Pg.414]

The majority of xylenes, which are mostly produced by catalytic reforming or petroleum fractions, ate used in motor gasoline (see Gasoline and other MOTORFUELs). The majority of the xylenes that are recovered for petrochemicals use are used to produce PX and OX. PX is the most important commercial isomer. Almost all of the PX is converted to terephthaUc acid and dimethylterephthalate, and then to poly(ethylene terephthalate) for ultimate use in fibers, films, and resins. [Pg.424]

Catalysts used in the polymerization of C-5 diolefins and olefins, and monovinyl aromatic monomers, foUow closely with the systems used in the synthesis of aHphatic resins. Typical catalyst systems are AlCl, AIBr., AlCl —HCl—o-xylene complexes and sludges obtained from the Friedel-Crafts alkylation of benzene. Boron trifluoride and its complexes, as weU as TiCl and SnCl, have been found to result in lower yields and higher oligomer content in C-5 and aromatic modified C-5 polymerizations. [Pg.354]

At room temperature, HDPE is not soluble in any known solvent, but at a temperature above 80—100°C, most HDPE resins dissolve in some aromatic, aflphatic, and halogenated hydrocarbons. The solvents most frequently used for HDPE dissolution are xylenes, tetralin, decalin 1,2,4-trimethylbenzene, o-dichlorobenzene, and 1,2,4-ttichlorobenzene. [Pg.379]

Chemical Properties and Reactivity. LLDPE is a saturated branched hydrocarbon. The most reactive parts of LLDPE molecules are the tertiary CH bonds in branches and the double bonds at chain ends. Although LLDPE is nonreactive with both inorganic and organic acids, it can form sulfo-compounds in concentrated solutions of H2SO4 (>70%) at elevated temperatures and can also be nitrated with concentrated HNO. LLDPE is also stable in alkaline and salt solutions. At room temperature, LLDPE resins are not soluble in any known solvent (except for those fractions with the highest branching contents) at temperatures above 80—100°C, however, the resins can be dissolved in various aromatic, aUphatic, and halogenated hydrocarbons such as xylenes, tetralin, decalin, and chlorobenzenes. [Pg.395]

Benzene, toluene, and xylene are made mosdy from catalytic reforming of naphthas with units similar to those already discussed. As a gross mixture, these aromatics are the backbone of gasoline blending for high octane numbers. However, there are many chemicals derived from these same aromatics thus many aromatic petrochemicals have their beginning by selective extraction from naphtha or gas—oil reformate. Benzene and cyclohexane are responsible for products such as nylon and polyester fibers, polystyrene, epoxy resins (qv), phenolic resins (qv), and polyurethanes (see Fibers Styrene plastics Urethane POLYiffiRs). [Pg.216]

Novolak Resins. In a conventional novolak process, molten phenol is placed into the reactor, foHowed by a precise amount of acid catalyst. The formaldehyde solution is added at a temperature near 90°C and a formaldehyde-to-phenol molar ratio of 0.75 1 to 0.85 1. For safety reasons, slow continuous or stepwise addition of formaldehyde is preferred over adding the entire charge at once. Reaction enthalpy has been reported to be above 80 kj /mol (19 kcal/mol) (29,30). The heat of reaction is removed by refluxing the water combined with the formaldehyde or by using a small amount of a volatile solvent such as toluene. Toluene and xylene are used for azeotropic distillation. FoHowing decantation, the toluene or xylene is returned to the reactor. [Pg.297]

Xylenes. The main appHcation of xylene isomers, primarily p- and 0-xylenes, is in the manufacture of plasticizers and polyester fibers and resins. Demands for xylene isomers and other aromatics such as benzene have steadily been increasing over the last two decades. The major source of xylenes is the catalytic reforming of naphtha and the pyrolysis of naphtha and gas oils. A significant amount of toluene and Cg aromatics, which have lower petrochemical value, is also produced by these processes. More valuable p- or 0-xylene isomers can be manufactured from these low value aromatics in a process complex consisting of transalkylation, eg, the Tatoray process and Mobil s toluene disproportionation (M lDP) and selective toluene disproportionation (MSTDP) processes isomerization, eg, the UOP Isomar process (88) and Mobil s high temperature isomerization (MHTI), low pressure isomerization (MLPI), and vapor-phase isomerization (MVPI) processes (89) and xylene isomer separation, eg, the UOP Parex process (90). [Pg.52]

The choice of catalyst is based primarily on economic effects and product purity requirements. More recentiy, the handling of waste associated with the choice of catalyst has become an important factor in the economic evaluation. Catalysts that produce less waste and more easily handled waste by-products are strongly preferred by alkylphenol producers. Some commonly used catalysts are sulfuric acid, boron trifluoride, aluminum phenoxide, methanesulfonic acid, toluene—xylene sulfonic acid, cationic-exchange resin, acidic clays, and modified zeoHtes. [Pg.62]

The syndiotactic polymer configuration is not obtained in pure form from polymerizations carried out above 20°C and, thus has not been a serious concern to most propylene polymerization catalyst designers. Eor most commercial appHcations of polypropylene, a resin with 96+% isotacticity is desired. Carbon-13 nmr can be used to estimate the isotactic fraction in a polypropylene sample. Another common analytical method is to dissolve the sample in boiling xylene and measure the amount of isotactic polymer that precipitates on cooling. [Pg.203]

The prime function of the saturated acid is to space out the double bonds and thus reduce the density of cross-linking. Phthalic anhydride is most commonly used for this purpose because it provides an inflexible link and maintains the rigidity in the cured resin. It has been used in increasing proportions during the past decade since its low price enables cheaper resins to be made. The most detrimental effect of this is to reduce the heat resistance of the laminates but this is frequently unimportant. It is usually produced by catalytic oxidation of o-xylene but sometimes naphthalene and is a crystalline solid melting at 131°C. [Pg.698]

Isophthalic acid (m.p. 347°C), made by oxidation of /w-xylene, has also been introduced for resins. The resins have higher heat distortion temperatures and flexural moduli and better craze resistance. They are also useful in the preparation of resilient gel coats. [Pg.699]

Xylenes (di methyl benzene) QH4(CH3)2 Plasticizers, polymer fibres and resins, solvents... [Pg.40]

The raw material has to be washed to remove impurities. Diluted sodium hydroxide allows the removal of phenols and benzonitrile, and diluted sulphuric acid reacts with pyridine bases. The resulting material is distilled to concentrate the unsaturated compounds (raw feedstock for coumarone-indene resin production), and separate and recover interesting non-polymerizable compounds (naphthalene, benzene, toluene, xylenes). Once the unsaturated compounds are distilled, they are treated with small amounts of sulphuric acid to improve their colour activated carbons or clays can be also used. The resulting material is subjected to polymerization. It is important to avoid long storage time of the feedstock because oxidation processes can easily occur, affecting the polymerization reaction and the colour of the coumarone-indene resins. [Pg.604]

Polymerization of raw feedstock. Aliphatic hydrocarbon resins. Raw feedstock contains straight-chain and cyclic molecules and mono- and diolefins. The most common initiator in the polymerization reaction is AICI3/HCI in xylene. The resinification consists of a two-stage polymerization in a reactor at 45°C and high pressure (10 MPa) for several hours. The resulting solution is treated with water and passed to distillation to obtain the aliphatic hydrocarbon resins. Several aliphatic hydrocarbon resins with different softening points can be adjusted. [Pg.608]

The main uses of toluene are as a solvent in paints, rubber, and plastic cements and as a feedstock in the manufacture of organic chemicals, explosives, detergents, and polyurethane foams. Xylenes (which exist as three isomers) are used in the manufacture of DMT, alkyd resins, and plasticizers. Naphthalene is mainly used in the manufacture of dyes, pharmaceuticals, insect repellents, and phthalic anhydride (used in the manufacture of alkyd resins, plasticizers, and polyester). [Pg.55]

An alternative copolymerization is illustrated by the method of Blasius. In this preparation, a phenol-formaldehyde (novolac) type system is formed. Monobenzo-18-crown-6, for example, is treated with a phenol (or alkylated aromatic like xylene) and formaldehyde in the presence of acid. As expected for this type of reaction, a highly crosslinked resin results. The method is illustrated in Eq. (6.23). It should also be noted that the additional aromatic can be left out and a crown-formaldehyde copolymer can be prepared in analogy to (6.22). ... [Pg.278]

In recent years the realisation of the danger to health from the presence of unreacted formaldehyde monomer in the working environment has led to the development of resins having very low free formaldehyde content, less than 0.5% instead of the usual 2-3%. This produces resins that are safer and less unpleasant to work with, though the solvent blend itself, xylene and butanol, has a very pronounced odour. [Pg.678]

Pimelic Acid (Heptanedioic Acid or 1,5-Pentane-dicarboxytlc Acid). HOOC.(CH2)s.COOH mw 160.17 white prisms mp 106° bp 272° at 100mm (subl), and 212° at 10mm d 1.329 g/cc at 15°. Sol in w, ethanol, eth and hot benz. Prepn is by oxidn of cycloheptanone, capric acid or oleic acid treatment of salicylic acid with Na in amyl ale, or by decarboxylating 1,1,5,5-pentanetetracarboxylic acid with heat Pimelic acid has been combined with cis and trans-, 4-cyclohexanediol to give polyesters, and with m-xylene-ce,ol -diamine or poly-methylenediamines to form polyamides. With diperoxides, the acid forms resins. It is also used as the parent compd to form the expls presented below... [Pg.778]


See other pages where Xylene resin is mentioned: [Pg.49]    [Pg.49]    [Pg.424]    [Pg.354]    [Pg.354]    [Pg.354]    [Pg.355]    [Pg.357]    [Pg.484]    [Pg.42]    [Pg.48]    [Pg.455]    [Pg.461]    [Pg.37]    [Pg.362]    [Pg.432]    [Pg.188]    [Pg.702]    [Pg.768]    [Pg.144]    [Pg.607]    [Pg.609]    [Pg.610]    [Pg.79]    [Pg.139]    [Pg.700]    [Pg.64]   


SEARCH



Musk Xylene under Alkyd Resins

© 2024 chempedia.info