Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Weakly Alkaline

Formula CT 06-13-04 SOURCES Zschimmer Schwarz GmbH Co. General Formulati ons [Pg.15]


Pure ethyl hydrogen sulphate is difficult to prepare, as it is an oily liquid, very soluble in water, and easily hydrolysed. It is therefore usually isolated as the potassium salt, since potassium ethyl sulphate crystallises well from water, and is not readily hydrolysed in neutral or weakly alkaline solution. [Pg.78]

Note. Phenols (unless nitrated) do not liberate CO, from Na,CO, solution. (e) Weakly alkaline. Alkali salts of some weak acids, pyridine. [Pg.404]

Methyl and ethyl ethers of phenols are most conveniently prepared by alkylation with dimethyl sulphate and diethyl sulphate respectively in weakly alkaline solution, for example ... [Pg.665]

Values of E° are obtained by extrapolation from measurements in weakly acid or weakly alkaline systems. [Pg.950]

Thiocyanate 0.18 Anodic wave neutral or weakly alkaline medium... [Pg.970]

In the United States and some European countries, beet-sugar-waste molasses, or Stefen s waste, has been used as raw material for MSG production. The 2-pyrrohdinone-5-carboxyhc acid [98-79-3] contained ia beet sugar as by-product, is hydrolyzed at weakly alkaline pH, and moderate temperature (eg, pH 10.5—11.5, at 85°C for 2 h) to avoid racemization (14). The pH of the hydrolyzate is adjusted to 3.2 with a mineral acid to precipitate crystals of L-glutamic acid. The L-glutamic acid crystals obtained are transformed to MSG as described above. [Pg.304]

The absorption of sulfur dioxide in alkaline (even weakly alkaline) aqueous solutions affords sulfites, bisulfites, and metabisulfites. The chemistry of the interaction of sulfur dioxide with alkaline substances, either in solution, slurry, or soHd form, is also of great technological importance in connection with air pollution control and sulfur recovery (25,227,235—241). Even weak bases such as 2inc oxide absorb sulfur dioxide. A slurry of 2inc oxide in a smelter can be used to remove sulfur dioxide and the resultant product can be recycled to the roaster (242). [Pg.144]

Further Preparative Reactions. When pulps are to be used in the production of materials that do not retain the original fiber stmcture, such as rayon or ceUulose acetate film, the lignin, hemiceUulose, and other components must be reduced to the lowest possible concentrations. A surfactant (ionic or nonionic) is often added during a hot, weakly alkaline extraction step after chlorination. Another approach, sometimes used in addition to the surfactant step, is to treat the pulp with 6—10% NaOH after most of the oxidative bleaching is finished. This treatment removes most of the hemiceUulose. In most purification plants the final stage includes use of sulfuric acid chelators are optional. [Pg.238]

Interaction between osmium(IV) and osmium(VI) and derivatives of dimerkaptotiopiron (DT) has been studied by amperemetric, potentiometric and spectral photometric methods in different mediums. It has been found out that in reactions of methyldimerkaptotiopiron (R) with Os(IV) and Os(VI) complex formation prevails. It has a step-like nature, being revealed by such change of ratio of Os R in the course of titration as Os(VI) R - from 1 1 to 1 4 in acid medium and from 2 1 to 1 4 in weak alkaline medium Os(IV) R - from 1 1 to 1 5 in medium of H SO and from 1 1 to 1 6 - in HCl medium. [Pg.120]

Zinc is attacked at high pH. However, in weakly alkaline solutions near room temperature, corrosion is actually very slight, being less than 1 mil/y (0.0254 mm/y) at a pH of 12. The corrosion rate increases rapidly at higher pH, approaching 70 mil/y (1.8 mm/y) at a pH near 14. Just as in aluminum corrosion, protection is due primarily to a stable oxide film that forms spontaneously on exposure to water. High alkalinity dissolves the oxide film, leading to rapid attack. [Pg.187]

Ammonium hydroxide (NH4OH) (aqueous ammonia solution) Weakly alkaline. Emits ammonia gas. Severe eye irritant... [Pg.28]

Acetyidigitoxin-a can be obtained from acetyldigitoxin-(3 by heating it in an anhydrous or aqueous organic solvent at neutral, weakly acid or weakly alkaline pH, i.e., at a pH range from about 3.5 to about 8. [Pg.23]

It should be noted that the manifestation of macro- and heteroreticulation is also observed for other carboxylic CP. A similar picture was obtained for weakly alkaline CP based on the derivatives of methacrylamide with HHTT [26]. [Pg.12]

On the basis of the nucleophilicity parameters B, NBs, and fi (see Table 8-2) one expects less of the homolytic product in water than in methanol. This is, however, not the case. It has been known for many decades that a very complex mixture of products is formed in the decomposition of diazonium ions, including polymeric products, the so-called diazo tars. In alcohols this is quite different. The number of products exceeds three or four only in exceptional cases, diazo tars are hardly formed. For dediazoniation in weakly alkaline aqueous solutions, there has, to the best of our knowledge, been only one detailed study (Besse et al., 1981) on the products of decomposition of 4-chlorobenzenediazonium fluoroborate in aqueous HCOf/ CO]- buffers at pH 9.00-10.30. Depending on reaction conditions, up to ten compounds of low molecular mass were identified besides the diazo tar. [Pg.201]

These reactions in weakly alkaline solutions are faster than the heterolytic (Dn + AN)-like hydroxy-de-diazoniation, which, for most diazonium ions, (depending on their electrophilicity), is dominant below pH 2-4. As shown by Ishino et al. (1976), an increase in rate, corresponding to the occurence of other mechanisms in addition to the heterolytic hydroxy-de-diazoniation, is observable at pH 3.7-7.0. The increase is dependent on the substituent in the specifically substituted benzenediazo-nium ion. The slope d(log )/d(pH) was found to be in the range 0.22-1.09 (see summary of the work of Ishino et al. by Zollinger, 1983, p. 624). [Pg.202]

Another approach for the synthesis of enantiopure amino acids or amino alcohols is the enantioselective enzyme-catalyzed hydrolysis of hydantoins. As discussed above, hydantoins are very easily racemized in weak alkaline solutions via keto enol tautomerism. Sugai et al. have reported the DKR of the hydantoin prepared from DL-phenylalanine. DKR took place smoothly by the use of D-hydantoinase at a pH of 9 employing a borate buffer (Figure 4.17) [42]. [Pg.101]

Sodium hydroxide (NaOH) (caustic soda) Potassium hydroxide (KOH) (caustic potash) Calcium hydroxide (Ca(OH)2) (slaked lime) Ammonium hydroxide (NH4OH) (aqueous ammonia solution) White deliquescent solid. Sticks, flakes, pellets. Dissolution in water is highly exothermic. Strongly basic. Severe hazard to skin tissue White deliquescent solid. Sticks, flakes, pellets. Dissolution In water is highly exothermic. Strongly basic. Severe hazard to skin tissue White powder soluble in water yielding lime water. Alkaline Weakly alkaline. Emits ammonia gas. Severe eye irritant... [Pg.28]

Elemental sulfur dissolves in boiling aqueous sodium sulfite solutions with the formation of sodium thiosulfate (Na2S203). The reaction proceeds quantitatively if sulfur and excess sodium sulfite are boiled for some time in weakly alkaline solutions. In the cold, however, practically no reaction occurs. Alternatively, thiosulfate can be produced quantitatively in solution phase by using organic solvents to first dissolve sulfur and then accomplish the reaction with aqueous sulfite. In a parallel reaction, elemental selenium dissolves in alkaline sulfite solution to produce selenosulfate, SeSO ... [Pg.14]

The behavior of aluminum in neutral and weakly alkaline solutions resembles the behavior of magnesium, but the negative difference effect is much less pronounced at aluminum. The steady-state potential of aluminum is approximately 1V more positive than the thermodynamic value. Yet unlike magnesium, aluminum will not passivate in strongly alkaline solutions, but undergoes fast dissolution to soluble aluminates. [Pg.308]

Stable under weakly alkaline, unstable under acidic and strongly alkaline conditions... [Pg.1215]

Stable in neutral, acidic and weakly alkaline conditions. Hydrolyzed in highly alkaline conditions. Stable to light and heat... [Pg.1228]

These reactions proceed very rapidly, so that the overall reaction corresponds to the transfer of two electrons. As reaction (5.7.9) is very slow in acid and neutral media, the electrode reaction is irreversible and the polarization curve does not depend on the concentration of hydrogen ions. In weakly alkaline media, reoxidation of H02 begins to occur. At pH > 11, the polarization curve at a dropping mercury electrode becomes reversible. In this way, the process proceeds in water and water-like solvents. On the other hand, for example in carbonate melts, the step following after the reaction (5.7.9) is the slow reaction 02 + e = 022-. [Pg.371]

The spent liquors may contain lint and residual size that can be removed by filtration. Weakly alkaline liquors represent a cost problem, however. Although limited amounts of less dilute liquor may be recycled and used in boiling-off or scouring, the major proportion becomes a rather troublesome component of the effluent load. Neutralisation simply increases the salt content of the effluent. Recovery of the alkali by vacuum evaporation is the usual procedure [282,283]. [Pg.157]

Pyrite is not only one of the key compounds in Wachtershauser s theory, but could also have fulfilled an important function for phosphate chemistry in prebiotic syntheses. A group in Rio de Janeiro studied the conditions for phosphate sorption and desorption under conditions which may have been present in the primeval ocean. In particular, the question arises as to the enrichment of free, soluble inorganic phosphate (Pi), which was probably present in low concentrations similar to those of today (10 7-10 8M) (Miller and Keffe, 1995). Experiments show that acid conditions favour sorption at FeS2, while a weakly alkaline milieu works in an opposite manner. Sorption of Pi can be favoured by various factors, such as hydrophobic coating of pyrite with molecules such as acetate, which could have been formed in the vicinity of hydrothermal systems, or the neutralisation of mineral surface charges by Na+ and K+. [Pg.203]


See other pages where Weakly Alkaline is mentioned: [Pg.326]    [Pg.383]    [Pg.5]    [Pg.373]    [Pg.297]    [Pg.311]    [Pg.103]    [Pg.23]    [Pg.55]    [Pg.232]    [Pg.435]    [Pg.82]    [Pg.103]    [Pg.252]    [Pg.718]    [Pg.200]    [Pg.277]    [Pg.475]    [Pg.874]    [Pg.13]    [Pg.307]    [Pg.129]    [Pg.130]    [Pg.416]    [Pg.226]    [Pg.555]   


SEARCH



Manganimetry in Neutral and Weakly Alkaline Media

Weakly Alkaline (Phosphate-Free)

© 2024 chempedia.info