Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vitamin preformed

Vitamin B12 is synthesized only by microorganisms it is not present in plants. Animals obtain the vitamin preformed from their natural bacterial flora or by eating foods derived from other animals. Cobalamin is present in appreciable amounts in liver, whole milk, eggs, oysters, fresh shrimp, pork, and chicken. [Pg.374]

Dihydropteroic acid (85) is an intermediate to the formation of the folic acid necessary for intermediary metabolism in both bacteria and man. In bacteria this intermediate is produced by enzymatic condensation of the pteridine, 86, with para-amino-benzoic acid (87). It has been shown convincingly that sulfanilamide and its various derivatives act as a false substrate in place of the enzymatic reaction that is, the sulfonamide blocks the reaction by occupying the site intended for the benzoic acid. The lack of folic acid then results in the death of the microorganism. Mammals, on the other hand, cannot synthesize folic acid instead, this compound must be ingested preformed in the form of a vitamin. Inhibition of the reaction to form folic acid Ls thus without effect on these higher organisms. [Pg.121]

Microbial insecticides are very complex materials in their final formulation, because they are produced by fermentation of a variety of natural products. For growth, the bacteria must be provided with a source of carbon, nitrogen, and mineral salts. Sufficient nutrient is provided to take the strain of choice through its life cycle to complete sporulation with concomitant parasporal body formation. Certain crystalliferous bacilli require sources of preformed vitamins and/or amino acids for growth. Media for growing these bacilli may vary from completely soluble, defined formulations, usable for bench scale work, to rich media containing insoluble constituents for production situations (10,27). Complex natural materials such as cottonseed, soybean, and fish meal are commonly used. In fact, one such commercial production method (25) is based on use of a semisolid medium, a bran, which becomes part of the final product. [Pg.70]

Niacin was discovered as a nutrient during studies of pellagra. It is not strictly a vitamin since it can be synthesized in the body from the essential amino acid tryptophan. Two compounds, nicotinic acid and nicotinamide, have the biologic activity of niacin its metabolic function is as the nicotinamide ring of the coenzymes NAD and NADP in oxidation-reduction reactions (Figure 45-11). About 60 mg of tryptophan is equivalent to 1 mg of dietary niacin. The niacin content of foods is expressed as mg niacin equivalents = mg preformed niacin + 1/60 X mg tryptophan. Because most of the niacin in cereals is biologically unavailable, this is discounted. [Pg.490]

The most commonly used oral anticoagulant drug in the U.S. is warfarin. It acts by altering vitamin K so that it is unavailable to participate in synthesis of vitamin K-dependent coagulation factors in the liver (coagulation factors II, VII, IX, and X). Because of the presence of preformed clotting factors in the blood, the full antithrombotic effect of warfarin therapy may require 36 to 72 h. [Pg.238]

Vitamin A deficiency affects more than 100 million children around the world (Miller and others 2002) and thus remains an important public health problem in many countries. Vitamin A is essential for vision, reproduction, growth, immune function, and general health of humans (van Lieshout and others 2001). The major sources of vitamin A in the human diet are retinyl esters (preformed vitamin A) found in foods of animal origin and provitamin A carotenoids from fruits and vegetables. Unfortunately, foods containing preformed vitamin A (meat, milk, eggs, etc.) are frequently too expensive for some economically deprived developing countries, and therefore dietary carotenoids are the main source of vitamin A in these countries. [Pg.208]

Vitamin D3 is a fat-soluble steroid-like molecule which elevates plasma calcium concentration. A typical diet contains some preformed vitamin D2 (from plant sources)... [Pg.299]

Recently we published data that even in countries with excellent food sources and availability, insufficient vitamin A supply will occur (Schulz et ah, 2007). The aim of this trial was to analyze vitamin A and p-carotene status and investigate the contribution of nutrition to vitamin A and p-carotene supply in mother-infant pairs of multiparous births or births within short birth rates. Twenty-nine volimteers aged between 21 and 36 years were evaluated for 48 hours after delivery. In order to establish overall supply, retinol and p-carotene were determined in maternal plasma, cord blood, and colostrum via HPLC analysis. A food frequency protocol was obtained from all participants. Regardless of the high-to-moderate socioeconomic background, 27.6% of participants showed plasma retinol levels below 1.4 pmol/liter, which can be taken as borderline deficiency. In addition, 46.4% showed retinol intake <66% of RDA and 50.0% did not consume liver at all, although liver contributes as a main source for preformed retinol. Despite a high total carotenoid intake of 6.9 3.9mg/day, 20.7% of mothers showed plasma levels <0.5 pmol/liter p-carotene. [Pg.189]

Vitamin A (retinol, 6.1) is the parent of a range of compounds known as retinoids, which possess the biological activity of vitamin A. In general, animal foods provide preformed vitamin A as retinyl esters (e.g. 6.5, which are easily hydrolysed in the gastrointestinal tract) while plant foods provide precursors of vitamin A, i.e. carotenoids. Only carotenoids with a /3-ionone ring (e.g. /1-carotene) can serve as vitamin A precursors. /3-Carotene (6.6)... [Pg.185]

Unlike other vitamins, cholecalciferol (vitamin D3) can be formed from a steroid precursor, 7-dehydrocholesterol (6.7), by the skin when exposed to sunlight with sufficient exposure to the sun, no preformed vitamin D is required from the diet. [Pg.188]

The classical niacin deficiency disease is pellagra, which is characterized by symptoms including diarrhoea, dermatitis, dementia and eventually death. High-protein diets are rarely deficient in niacin since, in addition to the preformed vitamin, such diets supply sufficient tryptophan to meet dietary requirements. Large doses of niacin can cause the dilation of capillaries, resulting in a painful tingling sensation. [Pg.199]

Milk contains about 0.1 mg niacin per 100 g and thus is not a rich source of the preformed vitamin. Tryptophan contributes roughly 0.7 mg NE per 100 g milk. In milk, niacin exists primarily as nicotinamide and its concentration does not appear to be affected greatly by breed of cow, feed, season or stage of lactation. Pasteurized goats (0.3 mg niacin and 0.7 mg NE from tryptophan per 100 g) and raw sheep s (0.4 mg niacin and 1.3 mg NE from tryptophan per 100 g) milk are somewhat richer than cows milk. Niacin levels in human milk are 0.2 mg niacin and 0.5 mg NE from tryptophan per 100 g. The concentration of niacin in most dairy products is low (Appendix 6A) but is compensated somewhat by tryptophan released on hydrolysis of the proteins. [Pg.199]

Diet Ergocalciferol (vitamin D2), found in plants, and cholecalc-iferol (vitamin 03), found in animal tissues, are sources of preformed vitamin D activity (Figure 28.22). Ergocalciferol and cholecalciferol differ chemically only in the presence of an additional double bond and methyl group in the plant sterol. [Pg.384]

Endogenous vitamin precursor 7-Dehydrocholesterol, an intermediate in cholesterol synthesis, is converted to cholecalciferol in the dermis and epidermis of humans exposed to sunlight. Preformed vitamin D is a dietary requirement only in individuals with limited exposure to sunlight. [Pg.384]

Niacin, a water-soluble vitamin vital for oxidation by living cells, functions in the body as a component of two important coenzymes nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP). NAD and NADP are involved in the release of energy from carbohydrate, fat, and protein, and in the synthesis of protein, fat, and pentoses for nucleic acid formation. Milk is a poor source of preformed niacin, containing about 0.08 mg per 100 g. However, milk s niacin value is considerably greater than indicated by its niacin content (Horwitt et al. 1981). Not only is the niacin in milk fully available, but the amino acid tryptophan in milk can be used by the body for the synthesis of niacin. For every 60 mg of tryptophan consumed, the body synthesizes 1 mg of niacin. Therefore, the niacin equivalents in 100 g milk equal 0.856 mg including that from pre-... [Pg.366]

In food, vitamin A exits in two forms preformed vitamin A (retinol and retinyl esters) in animal products and pro-vitamin A carotenoids... [Pg.368]

Although all heterotrophs depend on preformed organic compounds, they differ markedly in the numbers and types of compounds they require. Some species can make all required compounds when supplied with a single carbon source others have lost some or many biosynthetic capabilities. Mammals must obtain about half of their amino acids from external sources. They also are unable to make several metabolic cofactors, as evidenced by their well-known nutritional requirements for vitamins. Some bacteria and some parasites have even more extensive nutritional requirements than mammals. [Pg.229]

The major dietary sources for preformed vitamin A are vertebrate animal products that are rich in vitamin A esters (liver, kidney, oil, dairy products, and eggs). Liver and oil, particularly from fish, are the major dietary sources of preformed vitamin A. Levels in milk and eggs depend on dietary retinoid and carotenoid intake. Freshwater fish are a source of vitamin A2 (3,4-dehydroretinol), which shows reduced vitamin A activity. Levels of retinal in food are very low, whereas retinoic acid has not been found. [Pg.616]

Finally, sulfonamides can interfere with intermediary metabolism. Because of their structural similarity to para-aminobenzoic acid (PABA), they can function as competitive inhibitors for dihydropteroate synthase. The result is interruption of microbial synthesis of folic acid by blocking formation of the folic acid precursor dihydropteroic acid. Sensitive microorganisms are those that must synthesize their own folic acid. Conversely, resistant bacteria and normal mammalian cells are unaffected since they do not synthesize folic acid but use the preformed vitamin. [Pg.169]

Pro-oxidant conditions are favoured in infant formulae by the presence of iron and of vitamin C and can lead to oxidative damage to tryptophan residues, which here is of particular importance, tryptophan often being the limiting amino acid. Using a-lactalbumin as a model compound, as it is high in tryptophan, Puscasu and Birlouez-Aragon484 studied the loss of fluorescence due to tryptophan (Aex=290/Aem=340 nm) on incubation with lactose, preformed early and advanced MRP (from proteose-peptone, because it is low in tryptophan), H202/Fe2+, or ascorbate/Fe3+. In each case, after 3 h, there was an appreciable loss of tryptophan from the pH 4.6-soluble protein of about 28%. The MRPs, both formed and preformed, exhibited fluorescence at Aex = 350/Aem = 435-440 (major) and Aex = 330/Aem = 420 nm. [Pg.134]

Being impermeable to folic acid, many bacteria must rely on their ability to synthesize folate from PABA, pteridine, and glutamate. In contrast, human beings cannot synthesize folic acid and must obtain preformed folate as a vitamin in their diet. Because of their structural similarity to PABA, the sulfonamides compete with this substrate for the enzyme dihydropteroate synthetase, thus preventing the synthe-... [Pg.300]

Preformed vitamin A is found only in animals and a small number of bacteria. A number of the carotenoid pigments in plants can be cleaved oxidatively to yield retinol /S-carotene is quantitatively the most important of these provitamin A carotenoids. Although preformed retinol is both acutely and chronically toxic in excess, carotene is not, because there is only a limited capacity to cleave it to retinol. [Pg.31]

Q s-retinol has 75% of the biological activity of aU-trans-retinol, and reti-naldehyde has 90%. Food composition tables give total preformed vitamin A as the sum of aU-trans-retinol -i- 0.75 x 13-c/s-retinol - - 0.9 x retinaldehyde (Holland et al., 1991). [Pg.35]

During the development of vitamin A deficiency in experimental animals, the plasma concentration of RBP falls, while the liver content rises. The administration of retinol to deficient animals results in a considerable release of holo-RBP from the liver. This is a rapid effect on the release of preformed apo-RBP in response to the availability of retinol, rather than an increase in the synthesis of the protein. There is no evidence that retinol controls the synthesis of RB P (Soprano et al., 1982). This provides the basis of the relative dose response (RDR) test for liver stores of vitamin A (Section 2.4.1.3) administration of a test dose of retinol gives a considerably greater increase in plasma retinol, bound to RBP, in deficient subjects than in those with adequate liver reserves, because of the accumulation of apo-RBP in the liver. [Pg.46]

Table 2.5 Prudent Upper Levels of Habitual Intake (jjug of preformed vitamin A/day)... Table 2.5 Prudent Upper Levels of Habitual Intake (jjug of preformed vitamin A/day)...
It is not strictly correct to regard niacin as a vitamin. Its metabolic role is as the precursor of the nicotinamide moiety of the nicotinamide nucleotide coenzymes, nicotinamide adenine dinucleotide (NAD) and NADP, and this can also be synthesized in vivo from the essential amino acid tryptophan. At least in developed countries, average intakes of protein provide more than enough tryptophan to meet requirements for NAD synthesis without any need for preformed niacin. It is only when tryptophan metabolism is disturbed, or intake of the amino acid is inadequate, that niacin becomes a dietary essential. [Pg.200]


See other pages where Vitamin preformed is mentioned: [Pg.603]    [Pg.482]    [Pg.482]    [Pg.377]    [Pg.1286]    [Pg.52]    [Pg.199]    [Pg.189]    [Pg.821]    [Pg.239]    [Pg.317]    [Pg.178]    [Pg.317]    [Pg.43]    [Pg.72]    [Pg.142]    [Pg.249]    [Pg.43]    [Pg.72]    [Pg.142]   
See also in sourсe #XX -- [ Pg.110 ]




SEARCH



Preformation

Preforming

Preforms

© 2024 chempedia.info