Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinyl acetate physical properties

Emulsion Adhesives. The most widely used emulsion-based adhesive is that based upon poly(vinyl acetate)—poly(vinyl alcohol) copolymers formed by free-radical polymerization in an emulsion system. Poly(vinyl alcohol) is typically formed by hydrolysis of the poly(vinyl acetate). The properties of the emulsion are derived from the polymer employed in the polymerization as weU as from the system used to emulsify the polymer in water. The emulsion is stabilized by a combination of a surfactant plus a coUoid protection system. The protective coUoids are similar to those used paint (qv) to stabilize latex. For poly(vinyl acetate), the protective coUoids are isolated from natural gums and ceUulosic resins (carboxymethylceUulose or hydroxyethjdceUulose). The hydroHzed polymer may also be used. The physical properties of the poly(vinyl acetate) polymer can be modified by changing the co-monomer used in the polymerization. Any material which is free-radically active and participates in an emulsion polymerization can be employed. Plasticizers (qv), tackifiers, viscosity modifiers, solvents (added to coalesce the emulsion particles), fillers, humectants, and other materials are often added to the adhesive to meet specifications for the intended appHcation. Because the presence of foam in the bond line could decrease performance of the adhesion joint, agents that control the amount of air entrapped in an adhesive bond must be added. Biocides are also necessary many of the materials that are used to stabilize poly(vinyl acetate) emulsions are natural products. Poly(vinyl acetate) adhesives known as "white glue" or "carpenter s glue" are available under a number of different trade names. AppHcations are found mosdy in the area of adhesion to paper and wood (see Vinyl polymers). [Pg.235]

Tetraethylene glycol may be used direcdy as a plasticizer or modified by esterification with fatty acids to produce plasticizers (qv). Tetraethylene glycol is used directly to plasticize separation membranes, such as siHcone mbber, poly(vinyl acetate), and ceUulose triacetate. Ceramic materials utilize tetraethylene glycol as plasticizing agents in resistant refractory plastics and molded ceramics. It is also employed to improve the physical properties of cyanoacrylate and polyacrylonitrile adhesives, and is chemically modified to form polyisocyanate, polymethacrylate, and to contain siHcone compounds used for adhesives. [Pg.363]

Plasticizers. Monomeric (mol wt 250—450) plasticizers (qv) are predominantiy phthalate, adipate, sebacate, phosphate, or trimeUitate esters. Organic phthalate esters like dioctyl phthalate (DOP) are by far the most common plasticizers in flexible PVC. Phthalates are good general-purpose plasticizers which impart good physical and low temperature properties but lack permanence in hot or extractive service conditions and are therefore sometimes called migratory plasticizers. Polymeric plasticizers (mol wt up to 5000 or more) offer an improvement in nonmigratory permanence at a sacrifice in cost, low temperature properties, and processibiHty examples are ethylene vinyl acetate or nitrile polymers. [Pg.327]

Vinyl Acetate—Ethylene Copolymers. In these random copolymers, the ratio of ethylene to vinyl acetate (EVA) is varied from 30—60%. As the vinyl acetate content increases, the oil and heat resistance increases. With higher ethylene content the physical strength, tensile, and tear increases. The polymers are cured with peroxide. The main properties of these elastomers include heat resistance, moderate oil and solvent resistance, low compression set, good weather resistance, high damping, exceUent o2one resistance, and they can be easily colored (see Vinyl polymers, poly(VINYL acetate)). [Pg.234]

Vinyl acetate is a colorless, flammable Hquid having an initially pleasant odor which quickly becomes sharp and irritating. Table 1 Hsts the physical properties of the monomer. Information on properties, safety, and handling of vinyl acetate has been pubUshed (5—9). The vapor pressure, heat of vaporization, vapor heat capacity, Hquid heat capacity, Hquid density, vapor viscosity, Hquid viscosity, surface tension, vapor thermal conductivity, and Hquid thermal conductivity profile over temperature ranges have also been pubHshed (10). Table 2 (11) Hsts the solubiHty information for vinyl acetate. Unlike monomers such as styrene, vinyl acetate has a significant level of solubiHty in water which contributes to unique polymerization behavior. Vinyl acetate forms azeotropic mixtures (Table 3) (12). [Pg.458]

Vinyl neodecanoate [26544-09-2] is prepared by the reaction of neodecanoic acid and acetjiene in the presence of a catalyst such as zinc neodecanoate. Physical properties of the commercially available material, VeoVa 10 from Shell, are given in Table 4. The material is a mobile Hquid with a typical mild ester odor used in a number of areas, primarily in coatings, but also in constmction, adhesives, cosmetics, and a number of misceUaneous areas. Copolymerization of vinyl neodecanoate with vinyl acetate gives coating materials with exceUent performance on alkaline substrates and in exterior weathering conditions. [Pg.106]

Random copolymers of vinyl chloride and other monomers are important commercially. Most of these materials are produced by suspension or emulsion polymerization using free-radical initiators. Important producers for vinyl chloride—vinyUdene chloride copolymers include Borden, Inc. and Dow. These copolymers are used in specialized coatings appHcations because of their enhanced solubiUty and as extender resins in plastisols where rapid fusion is required (72). Another important class of materials are the vinyl chloride—vinyl acetate copolymers. Principal producers include Borden Chemicals Plastics, B. F. Goodrich Chemical, and Union Carbide. The copolymerization of vinyl chloride with vinyl acetate yields a material with improved processabihty compared with vinyl chloride homopolymer. However, the physical and chemical properties of the copolymers are different from those of the homopolymer PVC. Generally, as the vinyl acetate content increases, the resin solubiUty in ketone and ester solvents and its susceptibiUty to chemical attack increase, the resin viscosity and heat distortion temperature decrease, and the tensile strength and flexibiUty increase slightly. [Pg.185]

In order to improve the physical properties of HDPE and LDPE, copolymers of ethylene and small amounts of other monomers such as higher olefins, ethyl acrylate, maleic anhydride, vinyl acetate, or acryUc acid are added to the polyethylene. Eor example, linear low density polyethylene (LLDPE), although linear, has a significant number of branches introduced by using comonomers such as 1-butene or 1-octene. The linearity provides strength, whereas branching provides toughness. [Pg.432]

Chemical pretreatments with amines, silanes, or addition of dispersants improve physical disaggregation of CNTs and help in better dispersion of the same in rubber matrices. Natural rubber (NR), ethylene-propylene-diene-methylene rubber, butyl rubber, EVA, etc. have been used as the rubber matrices so far. The resultant nanocomposites exhibit superiority in mechanical, thermal, flame retardancy, and processibility. George et al. [26] studied the effect of functionalized and unfunctionalized MWNT on various properties of high vinyl acetate (50 wt%) containing EVA-MWNT composites. Figure 4.5 displays the TEM image of functionalized nanombe-reinforced EVA nanocomposite. [Pg.92]

The properties of ethylene-vinyl acetate copolymers vary widely with their ester content. At the lowest levels of vinyl acetate, they have physical properties that are similar to those of low density polyethylene. As the comonomer content increases, the material becomes less crystalline and more elastic. Copolymers made with the highest comonomer levels contain no measurable crystallinity. The resulting products are tough, flexible, and clear. The ester... [Pg.298]

Ethnyl acetate. See Vinyl acetate Ethofumesate, 73 326 Ethoxides, 70 528-529 4-Ethoxyacetanilide, 2 670-671 physical properties of, 2 666t Ethoxy carboxylates, 24 144, 145 Ethoxydiglycol acetate, in cosmetic molded sticks, 7 840t... [Pg.330]

However, consider some of the physical properties shown in Table 1. From Table 1, note that the boiling point is close to the temperature at which many vinyl polymerizations are often run (80°C). In fact, the water-vinyl acetate azeotrope boils even lower. Therefore, emulsion polymerizations have to be initiated at a moderate temperature. [Pg.71]

Unfomuilated poly(vinyl acetal) resins form hard, unpliable materials which are difficult to process without using solvents or plasticizers. Plasticizers aid resin processing, lower the glass-transition temperature, Th, and can profoundly change other physical properties of the resins. [Pg.1675]

VINYL ACETATE POLYMERS. Vinyl acetate is a colorless, flammable liquid having an initially pleasant odor which quickly becomes sharp and imitating. Table 1 lists the physical properties of the monomer. [Pg.1676]

The physical properties of polytvinyl alcohol) are highly correlated with the method of preparation, The final properties are affected by the polymerization conditions of the parent polytvinyl acetate), the hydrolysis conditions, drying, and grinding. Further, the term poly(vinyl alcohol) refers to an array of products that can be considered copolymers of vinyl acetate and vinyl alcohol. Representative properties are shown in Table 1. [Pg.1678]

Alternatively, thermal cracking of acetals or metal-catalyzed transviny-lation can be employed Some physical properties of the lower homologues of vinyl ether are presented in Table 1. [Pg.1689]

Extensive physical property data am available on methyl and ethyl acetate. Almost no experimental data arc reported on vinyl acetate. [Pg.54]

Kiparissides, et al. (8) developed mathematical models of two levels of sophistication for the vinyl acetate system a comprehensive model that solved for the age distribution function of polymer particles and a simplified model which solved a series of differential equations assuming discrete periods of particle nucleation. In practice, the simplified model adequately describes the physical process in that particle generation generally occurs in discrete intervals of time and these generation periods are short in duration when compared with operation time of the system. The simplified model is expanded here for a series of m reactors. The total property balances for number of particles, polymer volume, conversion, and area of particles, are written as ... [Pg.533]


See other pages where Vinyl acetate physical properties is mentioned: [Pg.368]    [Pg.111]    [Pg.378]    [Pg.450]    [Pg.455]    [Pg.461]    [Pg.483]    [Pg.238]    [Pg.167]    [Pg.352]    [Pg.355]    [Pg.722]    [Pg.499]    [Pg.298]    [Pg.159]    [Pg.189]    [Pg.71]    [Pg.416]    [Pg.72]    [Pg.397]    [Pg.137]    [Pg.39]    [Pg.72]    [Pg.166]    [Pg.2617]   
See also in sourсe #XX -- [ Pg.72 ]

See also in sourсe #XX -- [ Pg.205 ]




SEARCH



Acetals physical properties

Vinyl physical properties

© 2024 chempedia.info