Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetals physical properties

Physical properties. All are colourless crystalline solids except formic acid, acetic acid (m.p. 18 when glacial) and lactic acid (m.p. 18°, usually a syrup). Formic acid (b.p. loo ") and acetic acid (b.p. 118 ) are the only members which are readily volatile lactic acid can be distilled only under reduced pressure. Formic and acetic acids have characteristic pungent odours cinnamic acid has a faint, pleasant and characteristic odour. [Pg.347]

Physical properties. Acetic anhydride, (CH3C0).20, is a colourless liquid with a sharp pungent odour, decomposed slowly by water, in which it is only slightly soluble. [Pg.364]

The formulae and physical properties of a number of common acetals are collected in Table 111,69. [Pg.328]

Chemists and biochemists And it convenient to divide the principal organic substances present m cells into four mam groups carbohydrates proteins nucleic acids and lipids Structural differences separate carbo hydrates from proteins and both of these are structurally distinct from nucleic acids Lipids on the other hand are characterized by a physical property their solubility m nonpolar solvents rather than by their structure In this chapter we have examined lipid molecules that share a common biosynthetic origin m that all their carbons are derived from acetic acid (acetate) The form m which acetate occurs m many of these processes is a thioester called acetyl coenzyme A... [Pg.1101]

Physical Properties. Furfuryl alcohol (2-furanmethanol) [98-00-0] is aHquid, colorless, primary alcohol with a mild odor. On exposure to air, it gradually darkens in color. Furfuryl alcohol is completely miscible with water, alcohol, ether, acetone, and ethyl acetate, and most other organic solvents with the exception of paraffinic hydrocarbons. It is an exceUent, highly polar solvent, and dissolves many resins. [Pg.79]

Ben2onitri1e [100-47-0] C H CN, is a colorless Hquid with a characteristic almondlike odor. Its physical properties are Hsted in Table 10. It is miscible with acetone, ben2ene, chloroform, ethyl acetate, ethylene chloride, and other common organic solvents but is immiscible with water at ambient temperatures and soluble to ca 1 wt% at 100°C. It distills at atmospheric pressure without decomposition, but slowly discolors in the presence of light. [Pg.224]

A summary of the physical properties of glacial acetic acid is given in Table 5. ... [Pg.65]

Emulsion Adhesives. The most widely used emulsion-based adhesive is that based upon poly(vinyl acetate)—poly(vinyl alcohol) copolymers formed by free-radical polymerization in an emulsion system. Poly(vinyl alcohol) is typically formed by hydrolysis of the poly(vinyl acetate). The properties of the emulsion are derived from the polymer employed in the polymerization as weU as from the system used to emulsify the polymer in water. The emulsion is stabilized by a combination of a surfactant plus a coUoid protection system. The protective coUoids are similar to those used paint (qv) to stabilize latex. For poly(vinyl acetate), the protective coUoids are isolated from natural gums and ceUulosic resins (carboxymethylceUulose or hydroxyethjdceUulose). The hydroHzed polymer may also be used. The physical properties of the poly(vinyl acetate) polymer can be modified by changing the co-monomer used in the polymerization. Any material which is free-radically active and participates in an emulsion polymerization can be employed. Plasticizers (qv), tackifiers, viscosity modifiers, solvents (added to coalesce the emulsion particles), fillers, humectants, and other materials are often added to the adhesive to meet specifications for the intended appHcation. Because the presence of foam in the bond line could decrease performance of the adhesion joint, agents that control the amount of air entrapped in an adhesive bond must be added. Biocides are also necessary many of the materials that are used to stabilize poly(vinyl acetate) emulsions are natural products. Poly(vinyl acetate) adhesives known as "white glue" or "carpenter s glue" are available under a number of different trade names. AppHcations are found mosdy in the area of adhesion to paper and wood (see Vinyl polymers). [Pg.235]

Physical Properties. Trifluoroacetic acid [76-05-1], CF COOH, is a colorless Hquid with a sharp odor resembling that of acetic acid. Its... [Pg.307]

Physical properties of glycerol are shown in Table 1. Glycerol is completely soluble in water and alcohol, slightly soluble in diethyl ether, ethyl acetate, and dioxane, and insoluble in hydrocarbons (1). Glycerol is seldom seen in the crystallised state because of its tendency to supercool and its pronounced freesing point depression when mixed with water. A mixture of 66.7% glycerol, 33.3% water forms a eutectic mixture with a freesing point of —46.5°C. [Pg.346]

Acetins. The acetins are the mono-, di-, and triacetates of glycerol that form when glycerol is heated with acetic acid. Physical properties are shown in Table 4 they are all colorless. [Pg.350]

Tetraethylene glycol may be used direcdy as a plasticizer or modified by esterification with fatty acids to produce plasticizers (qv). Tetraethylene glycol is used directly to plasticize separation membranes, such as siHcone mbber, poly(vinyl acetate), and ceUulose triacetate. Ceramic materials utilize tetraethylene glycol as plasticizing agents in resistant refractory plastics and molded ceramics. It is also employed to improve the physical properties of cyanoacrylate and polyacrylonitrile adhesives, and is chemically modified to form polyisocyanate, polymethacrylate, and to contain siHcone compounds used for adhesives. [Pg.363]

Lead Chloride. Lead dichloride, PbCl2, forms white, orthorhombic needles some physical properties are given in Table 1. Lead chloride is slightly soluble in dilute hydrochloric acid and ammonia and insoluble in alcohol. It is prepared by the reaction of lead monoxide or basic lead carbonate with hydrochloric acid, or by treating a solution of lead acetate with hydrochloric acid and allowing the precipitate to settle. It easily forms basic chlorides, such as PbCl Pb(OH)2 [15887-88 ] which is known as Pattinson s lead white, an artist s pigment. [Pg.68]

Basic Lead Acetate. Basic lead acetate [1335-32-6] (lead subacetate), 2Pb(0H)2-Pb(C2H3 02 )2, is a heavy white powder which is used for sugar analyses. Some physical properties are given in Table 4. Reagent grade is available in 11.3-kg cartons and in 45- and 147-kg fiber dmms. [Pg.71]


See other pages where Acetals physical properties is mentioned: [Pg.389]    [Pg.38]    [Pg.48]    [Pg.75]    [Pg.75]    [Pg.378]    [Pg.248]    [Pg.503]    [Pg.312]    [Pg.68]    [Pg.71]    [Pg.71]    [Pg.71]    [Pg.71]    [Pg.338]   
See also in sourсe #XX -- [ Pg.98 ]




SEARCH



Acetate fiber physical properties

Acetic acid physical properties

Acetic acid: esters from physical properties

Acetic anhydride: acetylation with physical properties

Benzyl acetate, physical properties

Butyl acetate, physical properties

Ethyl acetate physical properties

Glacial acetic acid physical properties

Iodine acetate physical properties

Isobutyl acetate, physical properties

Isopropyl acetate, physical properties

Methyl acetate, physical properties

Sodium acetate, physical properties

Vinyl acetate physical properties

© 2024 chempedia.info