Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition complex formation

The presence of two double bonds greatly increase the number of the interconnected effects determining the configuration of an added monomeric unit. In this case the stereochemistry may already be established during the transition complex formation between the monomer and the centre or after the insertion of the diene into the metal—carbon bond. The realization of either of these possibilities is determined by the specific driving force of addition, composed of the electronic, steric, and isomeric states of the diene. [Pg.273]

It is obvious that the difference between equation (6.19) and (6.20) is that the formation of the transition complex A -B is an equilibrium reaction. This means, for example, that by reaction (6.20) shown for thermal cracking, the transition complex is an unstable compound that reacts immediately to products or back to reactants. The reaction velocity of the transition complex formation can be calculated by equation (6.21). [Pg.269]

Because k2 depends only on temperature, and this is a compound independent value, it is often called the universal constant of transition complex formation. The value of k2 at room temperature for all types of reactions is approximately 6 1012 sec 1. [Pg.270]

Chemical Properties. Higher a-olefins are exceedingly reactive because their double bond provides the reactive site for catalytic activation as well as numerous radical and ionic reactions. These olefins also participate in additional reactions, such as oxidations, hydrogenation, double-bond isomerization, complex formation with transition-metal derivatives, polymerization, and copolymerization with other olefins in the presence of Ziegler-Natta, metallocene, and cationic catalysts. All olefins readily form peroxides by exposure to air. [Pg.426]

Up to this point, we have emphasized the stereochemical properties of molecules as objects, without concern for processes which affect the molecular shape. The term dynamic stereochemistry applies to die topology of processes which effect a structural change. The cases that are most important in organic chemistry are chemical reactions, conformational changes, and noncovalent complex formation. In order to understand the stereochemical aspects of a dynamic process, it is essential not only that the stereochemical relationship between starting and product states be established, but also that the spatial features of proposed intermediates and transition states must account for the observed stereochemical transformations. [Pg.97]

The mechanism of hydrolysis and alcoholysis has been described, and the greater reactivity of the 4-position over the 2-position is attributed to the greater stability of the transition complex (20) with respect to (21), hence its greater ease of formation. The hydrolysis... [Pg.269]

The ethylenediamine derivative [31] possesses higher promoting activities than other diamines. This phenomenon may be ascribed to the copromoting effect of the two amino groups on the decomposition of persulfate through a CCT (contact charge transfer complex) formation. So we proposed the initiation mechanism via CCT as the intimate ion pair and deprotonation via CTS (cyclic transition state) as follows ... [Pg.235]

For transition elements there are usually empty d orbitals ready to accommodate electrons from attached groups. This is by no means always necessary, as witness the case of Zn+2, a good complex-former even though all its 3c orbitals are already occupied. Any vacant orbital, low enough in energy to be populated, will serve as a means whereby complex formation can be accomplished. [Pg.395]

At the present time the concept of catalytic (or ionic-coordination ) polymerization has been developed by investigating polymerization processes in the presence of transition metal compounds. The catalytic polymerization may be defined as a process in which the catalyst takes part in the formation of the transition complexes of elementary acts during the propagation reaction. [Pg.173]

In addition to complex-formation, the interaction of transition-metal atoms with organic substrates at low temperatures can result in rearrangement of the organic moiety without complexation. Two such reactions have already been briefly mentioned, namely, the polymerization of hexafluoro-2-butyne by Ge and Sn atoms (72) and the polymerization of styrene by Cr atoms (i 1). In this section we shall briefly summarize some of these transition-metal-atom-promoted, organic rearrangements. [Pg.160]

In addition to chemical reactions, the isokinetic relationship can be applied to various physical processes accompanied by enthalpy change. Correlations of this kind were found between enthalpies and entropies of solution (20, 83-92), vaporization (86, 91), sublimation (93, 94), desorption (95), and diffusion (96, 97) and between the two parameters characterizing the temperature dependence of thermochromic transitions (98). A kind of isokinetic relationship was claimed even for enthalpy and entropy of pure substances when relative values referred to those at 298° K are used (99). Enthalpies and entropies of intermolecular interaction were correlated for solutions, pure liquids, and crystals (6). Quite generally, for any temperature-dependent physical quantity, the activation parameters can be computed in a formal way, and correlations between them have been observed for dielectric absorption (100) and resistance of semiconductors (101-105) or fluidity (40, 106). On the other hand, the isokinetic relationship seems to hold in reactions of widely different kinds, starting from elementary processes in the gas phase (107) and including recombination reactions in the solid phase (108), polymerization reactions (109), and inorganic complex formation (110-112), up to such biochemical reactions as denaturation of proteins (113) and even such biological processes as hemolysis of erythrocytes (114). [Pg.418]

Polarographic studies are reported on thioesters, mainly of the type (140) and (141), and on trichloroethylphosphonites. In the field of nucleotides and nucleosides it is found that ATP has a very high surface activity at the mercury electrode, which is strongly dependent upon complex formation with transition metals. The polarographic behaviour of cobalt complexes with triphenylphosphine and its oxide has been studied in order to estimate extraction efficiencies. [Pg.284]

For the reduction of NO with propene, the catalyst potential dependence of the apparent activation energies does not show a step change and is much less pronounced than it is for the CO+O2 and NO+CO systems. There is persuasive evidence [20] that the step change is associated with a surface phase transition - the formation or disruption of islands of CO. It is reasonable to assume that this phenomenon cannot occur in the NO+propene case, since there is no reason to expect that large amounts of chemisorbed CO can be present under any conditions. That there should be a difference in this respect between CO+O2/CO+NO on the one hand, and NO+propene on the other hand, is therefore understandable however, the chemical complexity of the adsorbed layer in the NO+-propene precludes any detailed analysis of the Ea(VwR> effect. [Pg.521]

Transition Metal-Ligand Complex Formation - Co(ll) Complexes... [Pg.563]

On the other hand, many pericyclic reactions are accelerated by Lewis-acid catalysts. The acceleration has been attributed to a complex formation between the Lewis acid and the polar groups of the reactants that brings about changes in the energies and orbital coefficients of the frontier orbitals.6 The complex formation also stabilizes the enhanced polarized transition state. [Pg.375]

The ability of transition metal ions, and especially chromium (as Cr3+), to form very stable metal complexes may be used to produce dyeings on protein fibres with superior fastness properties, especially towards washing and light. The chemistry of transition metal complex formation with azo dyes is discussed in some detail in Chapter 3. There are two application classes of dyes in which this feature is utilised, mordant dyes and premetallised dyes, which differ significantly in application technology but involve similar chemistry. [Pg.123]

In this chapter we have seen that enzymatic catalysis is initiated by the reversible interactions of a substrate molecule with the active site of the enzyme to form a non-covalent binary complex. The chemical transformation of the substrate to the product molecule occurs within the context of the enzyme active site subsequent to initial complex formation. We saw that the enormous rate enhancements for enzyme-catalyzed reactions are the result of specific mechanisms that enzymes use to achieve large reductions in the energy of activation associated with attainment of the reaction transition state structure. Stabilization of the reaction transition state in the context of the enzymatic reaction is the key contributor to both enzymatic rate enhancement and substrate specificity. We described several chemical strategies by which enzymes achieve this transition state stabilization. We also saw in this chapter that enzyme reactions are most commonly studied by following the kinetics of these reactions under steady state conditions. We defined three kinetic constants—kai KM, and kcJKM—that can be used to define the efficiency of enzymatic catalysis, and each reports on different portions of the enzymatic reaction pathway. Perturbations... [Pg.46]

The well-known tetrahedral [Co(NCS)4]2 ion has continued to attract attention from analytical chemists, physical chemists, and spectroscopists. The inelastic electron tunneling (IET) spectrum of (Me4N)2[Co(NCS)4] was compared with IR and Raman spectra of the same complex.359 The vibrational bands due to the Me4N+ were prominent in all three spectra, but Coligand stretches were absent from the IET spectra. The lowest 4 42 4T2 electronic transition was strong in the IET spectrum but absent from the IR spectrum. The electric dipole allowed 4A2 4TX electronic transition was observed in both the IET and IR spectra and no fine structure was observed. Complex formation equilibria between Co11 and SCN- were studied calorimetri-... [Pg.38]


See other pages where Transition complex formation is mentioned: [Pg.330]    [Pg.186]    [Pg.330]    [Pg.186]    [Pg.287]    [Pg.47]    [Pg.557]    [Pg.566]    [Pg.396]    [Pg.616]    [Pg.807]    [Pg.6]    [Pg.266]    [Pg.419]    [Pg.206]    [Pg.382]    [Pg.131]    [Pg.133]    [Pg.145]    [Pg.23]    [Pg.286]    [Pg.34]    [Pg.77]    [Pg.68]    [Pg.166]    [Pg.145]    [Pg.220]    [Pg.231]    [Pg.246]    [Pg.255]   
See also in sourсe #XX -- [ Pg.415 ]




SEARCH



Transition formation

© 2024 chempedia.info