Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Binary complexer

Huang Z S, Jucks K W and Miiier R E 1986 The argon-hydrogen fluoride binary complex an example of a long lived... [Pg.2452]

The catalytic subunit of cAPK contains two domains connected by a peptide linker. ATP binds in a deep cleft between the two domains. Presently, crystal structures showed cAPK in three different conformations, (1) in a closed conformation in the ternary complex with ATP or other tight-binding ligands and a peptide inhibitor PKI(5-24), (2) in an intermediate conformation in the binary complex with adenosine, and (3) in an open conformation in the binary complex of mammalian cAPK with PKI(5-24). Fig.l shows a superposition of the three protein kinase configurations to visualize the type of conformational movement. [Pg.68]

As a template for an intermediate conformation of protein kinase, the crystal structure of the binary complex of cAPK with adenosine (Ibkx.pdb in the Protein Data Bank) was used. As templates for open conformations... [Pg.68]

Fig. 2. Conformational free energy of closed, intermediate and open protein kinase conformations. cAPK indicates the unbound form of cAMP-dependent protein kinase, cAPKiATP the binary complex of cAPK with ATP, cAPKiPKP the binary complex of cAPK with the peptide inhibitor PKI(5-24), and cAPK PKI ATP the ternary complex of cAPK with ATP and PKI(5-24). Shown are averaged values for the three crystal structures lATP.pdb, ICDKA.pdb, and ICDKB.pdb. All values have been normalized with respect to the free energy of the closed conformations. Fig. 2. Conformational free energy of closed, intermediate and open protein kinase conformations. cAPK indicates the unbound form of cAMP-dependent protein kinase, cAPKiATP the binary complex of cAPK with ATP, cAPKiPKP the binary complex of cAPK with the peptide inhibitor PKI(5-24), and cAPK PKI ATP the ternary complex of cAPK with ATP and PKI(5-24). Shown are averaged values for the three crystal structures lATP.pdb, ICDKA.pdb, and ICDKB.pdb. All values have been normalized with respect to the free energy of the closed conformations.
The catalytic subunit then catalyzes the direct transfer of the 7-phosphate of ATP (visible as small beads at the end of ATP) to its peptide substrate. Catalysis takes place in the cleft between the two domains. Mutual orientation and position of these two lobes can be classified as either closed or open, for a review of the structures and function see e.g. [36]. The presented structure shows a closed conformation. Both the apoenzyme and the binary complex of the porcine C-subunit with di-iodinated inhibitor peptide represent the crystal structure in an open conformation [37] resulting from an overall rotation of the small lobe relative to the large lobe. [Pg.190]

Structure of binary complexes of mono- and poly-nucleotides with metal ions of the first transition group. H. Pezzano and F. Podo, Chem. Rev., 1980, 80, 365-401 (389). [Pg.27]

There are other substrates for the E. coli Met(0) peptide reductase, one of which is Met(0)-a-l-PI. The native protein is the major serum elastase inhibitor that functions by forming a binary complex with elastase which inhibits its activity. Met(0)-a-l-PI, on the other hand, which can be formed by treatment of the protein with TV-chlorosuccinimide, cannot form a complex with elastase and therefore is not able to inhibit elastase activity117,118. Table 6 shows, however, that when Met(0)-a-l-PI is incubated in the presence of Met(0)-peptide reductase and dithiothreitol the protein regains its ability to form a complex with elastase and inhibit elastase activity119. Similar to results found with Met(0)-L12 reduced thioredoxin could replace the dithiothreitol as reductant in the enzymatic reaction. [Pg.863]

In rheumatoid arthritis the damage that is found in joints may also be a result of the inactivation of a-1-PI due to the oxidation of an essential methionine(s) residue in this protein. It has been found that a-l-PI purified from the synovial fluid of patients with rheumatoid arthritis contained four Met(O) residues and was not able to form a binary complex with elastase89. It is probable that the presence of the Met(Oj residues in a-l-PI from these patients results from a high level of oxidants produced by neutrophils in the inflammed joint. [Pg.868]

Nickel and palladium react with a number of olefins other than ethylene, to afford a wide range of binary complexes. With styrene (11), Ni atoms react at 77 K to form tris(styrene)Ni(0), a red-brown solid that decomposes at -20 °C. The ability of nickel atoms to coordinate three olefins with a bulky phenyl substituent illustrates that the steric and electronic effects (54,141) responsible for the stability of a tris (planar) coordination are not sufficiently great to preclude formation of a tris complex rather than a bis (olefin) species as the highest-stoichiometry complex. In contrast to the nickel-atom reaction, chromium atoms react (11) with styrene, to form both polystyrene and an intractable material in which chromium is bonded to polystyrene. It would be interesting to ascertain whether such a polymeric material might have any catal3dic activity, in view of the current interest in polymer-sup-ported catalysts (51). [Pg.149]

Matthews DA, Alden RA, Bolin JT, Freer ST, Hamlin R, Xuong N et al. Dihydrofolate reductase X-ray structure of the binary complex with methotrexate. Science 1977 197 452-5. [Pg.298]

The first step in this process involves the binding of GTP by eIF-2. This binary complex then binds to met-tRNAf a tRNA specifically involved in binding to the initiation codon AUG. (There are two tRNAs for methionine. One specifies methionine for the initiator codon, the other for internal methionines. Each has a unique nucleotide sequence.) This ternary complex binds to the 40S ribosomal subunit to form the 43S preinitiation complex, which is stabilized by association with eIF-3 and elF-lA. [Pg.365]

Plasminogen activator inhibitors have been shown to be present in a large variety of different cells and tissues. These inhibitors are thought to play an important role in regulating tissue fibrinolysis. One of these inhibitors has been purified from cultured bovine aortic epithelial cells. This inhibitor has been shown to be a serine protease inhibitor and inhibits the function of two proteolytic enzymes urokinase and tissue plasminogen activator, both of which cleave and activate plasminogen. The mechanism by which this inhibitor functions is very similar to that described above with a-l-PI. Thus, the inhibitor forms a binary complex with the proteolytic enzyme and thereby inhibits its activity. Again in a situation comparable to that with a-l-PI, it was found that when the purified bovine aortic epithelial inhibitor was exposed to Al-chlorosuccinimide,... [Pg.863]

In an effort to improve the water solubility of camptothecin, Rahier et al. [50] synthesized four 20-O-phosphate derivatives (VI). These compounds are freely water-soluble, stable to physiological pH, and stabilize the human topo I-DNA covalent binary complex with the same sequence-selectivity as camptothecin itself All four compounds inhibited the growth... [Pg.51]

The binary complex ES is commonly referred to as the ES complex, the initial encounter complex, or the Michaelis complex. As described above, formation of the ES complex represents a thermodynamic equilibrium, and is hence quantifiable in terms of an equilibrium dissociation constant, Kd, or in the specific case of an enzyme-substrate complex, Ks, which is defined as the ratio of reactant and product concentrations, and also by the ratio of the rate constants kM and km (see Appendix 2) ... [Pg.22]

As we have just seen, the initial encounter complex between an enzyme and its substrate is characterized by a reversible equilibrium between the binary complex and the free forms of enzyme and substrate. Hence the binary complex is stabilized through a variety of noncovalent interactions between the substrate and enzyme molecules. Likewise the majority of pharmacologically relevant enzyme inhibitors, which we will encounter in subsequent chapters, bind to their enzyme targets through a combination of noncovalent interactions. Some of the more important of these noncovalent forces for interactions between proteins (e.g., enzymes) and ligands (e.g., substrates, cofactors, and reversible inhibitors) include electrostatic interactions, hydrogen bonds, hydrophobic forces, and van der Waals forces (Copeland, 2000). [Pg.23]

Miller and Wolfenden, 2002). This latter ratio is the inverse of the rate enhancement achieved by the enzyme. In other words, the enzyme active site will have greater affinity for the transition state structure than for the ground state substrate structure, by an amount equivalent to the fold rate enhancement of the enzyme (rearranging, we can calculate KJX = Ksik Jk, )). Table 2.2 provides some examples of enzymatic rate enhancements and the calculated values of the dissociation constant for the /A binary complex (Wolfenden, 1999). [Pg.33]

A second ternary complex reaction mechanism is one in which there is a compulsory order to the substrate binding sequence. Reactions that conform to this mechanism are referred to as bi-bi compulsory ordered ternary complex reactions (Figure 2.13). In this type of mechanism, productive catalysis only occurs when the second substrate binds subsequent to the first substrate. In many cases, the second substrate has very low affinity for the free enzyme, and significantly greater affinity for the binary complex between the enzyme and the first substrate. Thus, for all practical purposes, the second substrate cannot bind to the enzyme unless the first substrate is already bound. In other cases, the second substrate can bind to the free enzyme, but this binding event leads to a nonproductive binary complex that does not participate in catalysis. The formation of such a nonproductive binary complex would deplete the population of free enzyme available to participate in catalysis, and would thus be inhibitory (one example of a phenomenon known as substrate inhibition see Copeland, 2000, for further details). When substrate-inhibition is not significant, the overall steady state velocity equation for a mechanism of this type, in which AX binds prior to B, is given by Equation (2.16) ... [Pg.44]

In this chapter we have seen that enzymatic catalysis is initiated by the reversible interactions of a substrate molecule with the active site of the enzyme to form a non-covalent binary complex. The chemical transformation of the substrate to the product molecule occurs within the context of the enzyme active site subsequent to initial complex formation. We saw that the enormous rate enhancements for enzyme-catalyzed reactions are the result of specific mechanisms that enzymes use to achieve large reductions in the energy of activation associated with attainment of the reaction transition state structure. Stabilization of the reaction transition state in the context of the enzymatic reaction is the key contributor to both enzymatic rate enhancement and substrate specificity. We described several chemical strategies by which enzymes achieve this transition state stabilization. We also saw in this chapter that enzyme reactions are most commonly studied by following the kinetics of these reactions under steady state conditions. We defined three kinetic constants—kai KM, and kcJKM—that can be used to define the efficiency of enzymatic catalysis, and each reports on different portions of the enzymatic reaction pathway. Perturbations... [Pg.46]

We have already used the interactions of methotrexate with dihydrofolate reductase (DHFR) several times within this text to illustrate some key aspects of enzyme inhibition. The reader will recall that methotrexate binds to both the free enzyme and the enzyme-NADPH binary complex but displays much greater affinity for the latter species. The time dependence of methotrexate binding to bacterial DHFR was studied by Williams et al. (1979) under conditions of saturating [NADPH], In the presence of varying concentrations of methotrexate, the progress curves for DHFR activity became progressively more nonlinear (Figure 6.14). The value of kobs from... [Pg.162]

Figure 6.17 Cartoon depicting the interactions of FKBP with inhibitor and the subsequent binding of the FKBP Inhibitor binary complex to the enzyme calcineurin (E). Figure 6.17 Cartoon depicting the interactions of FKBP with inhibitor and the subsequent binding of the FKBP Inhibitor binary complex to the enzyme calcineurin (E).
Addition of the L-732,531 FKBP binary complex to a calcineurin activity assay resulted in increasingly nonlinear progress curves with increasing binary complex concentration. The htting of the data to Equation (6.3) revealed an inhibitor concentration effect on v-, as well as on vs and obs, consistent with a two-step mechanism of inhibition as in scheme C of Figure 6.3. Salowe and Hermes analyzed the concentration-response effects of the binary complex on v, and determined an IC50 of 0.90 pM that, after correction for I.S I/A (assuming competitive inhibition), yielded a A) value for the inhibitor encounter complex of 625 nM. [Pg.166]


See other pages where Binary complexer is mentioned: [Pg.2447]    [Pg.70]    [Pg.70]    [Pg.108]    [Pg.185]    [Pg.352]    [Pg.352]    [Pg.436]    [Pg.863]    [Pg.161]    [Pg.447]    [Pg.298]    [Pg.11]    [Pg.24]    [Pg.24]    [Pg.43]    [Pg.48]    [Pg.64]    [Pg.70]    [Pg.71]    [Pg.75]    [Pg.146]    [Pg.146]    [Pg.163]    [Pg.165]    [Pg.166]    [Pg.171]   
See also in sourсe #XX -- [ Pg.65 ]




SEARCH



Activity binary complexes

Binary Carbonyl-Iron Complexes

Binary Complexes of Hydrogen Fluoride and Water

Binary carbonyl complexes

Binary complex, enhancement

Binary complexes

Binary complexes

Binary structures xanthate complexes

Enzyme binary complex

Enzyme-substrate complex, binary

Higher-than-binary complexes

Hydrides, binary complex

Inhibitor binding binary complexes

Iron complexes binary

Main Group Parallels with Binary Carbonyl Complexes

Metal bridge complexes binary complex formation

Metal carbonyl complexes binary

Mononuclear complexes binary structures

Other Binary Complexes

Phase diagrams complex binary

Receptors binary complexes

Rhodium complex binary catalytic

The fast binary reaction in complex flows

© 2024 chempedia.info