Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Toluene selectivity for

Figure 7 shows the results of measurements of adsorption density by Parsonage, etal. [77] on a series of eighteen block copolymers, with poly(2-vinylpyridine) [PVP] anchors and polystyrene [PS] buoys, adsorbed from toluene (selective for PS) of variable molecular weight in each block. The results are presented as the reciprocal square of Eq. 28, that is, as a dimensionless number density of chains ct (d/Rg A)-2. For all but the copolymers of highest asymmetry, Eq. 28 is in good agreement with the data of Fig. 7. The high asymmetry copolymers are in the regime of the data of curves (a) and (c) of Fig. 3 where the large relative size... Figure 7 shows the results of measurements of adsorption density by Parsonage, etal. [77] on a series of eighteen block copolymers, with poly(2-vinylpyridine) [PVP] anchors and polystyrene [PS] buoys, adsorbed from toluene (selective for PS) of variable molecular weight in each block. The results are presented as the reciprocal square of Eq. 28, that is, as a dimensionless number density of chains ct (d/Rg A)-2. For all but the copolymers of highest asymmetry, Eq. 28 is in good agreement with the data of Fig. 7. The high asymmetry copolymers are in the regime of the data of curves (a) and (c) of Fig. 3 where the large relative size...
PS P4VP Toluene (selective for PS) Determination of scattering density profile and comparison to scaling theory SANS Forster et al. (1996)... [Pg.158]

The main by-products ia the dehydrogenation reactor are toluene and benzene. The formation of toluene accounts for the biggest yield loss, ie, approximately 2% of the styrene produced when a high selectivity catalyst is used. Toluene is formed mostly from styrene by catalytic reactions such as the foUowiag ... [Pg.481]

C and 5 kg/cm pressure (see Molecularsieves). Selectivity for toluene and xylenes peaks at 550°C but continues with increasing temperature for hensene. The Cyclar process (Fig. 6) developed joindy by BP and UOP uses a spherical, proprietary seoHte catalyst with a nonnoble metallic promoter to convert C or C paraffins to aromatics. The drawback to the process economics is the production of fuel gas, alow value by-product. BP operated a... [Pg.181]

Novolacs are usually made under acidic conditions. Oxalic, sulfuric, toluene sulfonic, phenyl sulfonic, methane sulfonic, hydrochloric, and phosphoric acids are the most common catalysts, though nearly any moderately strong acid will probably do. Often selection of the acid has significant effects on the resultant polymer structure or performance. Sometimes acids are selected for their volatility, as it may be necessary to distill the acid off in some processes. [Pg.920]

Bu2SnO, toluene, reflux, 4 h Pd(Ph3P)4, THE, CH2=CHCH(OAc)2, rt, 1 h, 80-89% yield. In pyranoside protection, selectivity for 1,3-dioxane formation is generally observed, but dioxolanes are often formed. [Pg.206]

The conversion of the BOC group to other carbamates is achieved by heating the alcohol, Ti(0-/-Pr)4 in toluene. Teoc-, Cbz-, and Alloc-pro-tected primary amines have been prepared in this fashion. The reaction is selective for a primary BOC derivative. ... [Pg.522]

Prepare a benzene-toluene mixture by placing 0.05 mL of each liquid in a 25 mL graduated flask and making up to the mark with methanol. Take 1.5 mL of this solution, place in a lOmL graduated flask and dilute to the mark with methanol this solution contains benzene at the same concentration as solution 5, and toluene at the same concentration as solution 5. Measure the absorbances of this solution at the two wavelengths selected for the Beer s Law plots of both benzene and toluene. Then use the procedure detailed in Section 17.48 to evaluate the composition of the solution and compare the result with that calculated from the amounts of benzene and toluene taken. [Pg.715]

Molybdenum hexacarbonyl [Mo(CO)6] has been vised in combination with TBHP for the epoxidation of terminal olefins [44]. Good yields and selectivity for the epoxide products were obtained when reactions were performed under anhydrous conditions in hydrocarbon solvents such as benzene. The inexpensive and considerably less toxic Mo02(acac)2 is a robust alternative to Mo(CO)6 [2]. A number of different substrates ranging from simple ot-olefms to more complex terpenes have been oxidized with very low catalytic loadings of this particular molybdenum complex (Scheme 6.2). The epoxidations were carried out with use of dry TBHP (-70%) in toluene. [Pg.196]

Traditional methods for bromination of toluene with bromine and a catalyst result in relatively low / ara-selectivity. For example, bromine in acetic acid gives rise to approximately a 4 1 mixture of the para- and ort/to-bromotoluenes (ref. 4). The para-selectivity is enhanced in trifluoroacetic acid so that approximately 90 % of the para-isomer is produced, but greater selectivity than this is unusual. [Pg.51]

As an example of the selective removal of products, Foley et al. [36] anticipated a selective formation of dimethylamine over a catalyst coated with a carbon molecular sieve layer. Nishiyama et al. [37] demonstrated the concept of the selective removal of products. A silica-alumina catalyst coated with a silicalite membrane was used for disproportionation and alkylation of toluene to produce p-xylene. The product fraction of p-xylene in xylene isomers (para-selectivity) for the silicalite-coated catalyst largely exceeded the equilibrium value of about 22%. [Pg.219]

This paper is concerned with the synthesis of Y zeolite with Si02/Al203 ratio of 4.5 from kaolin taken in Yen Bai-Vietnam and their catal3dic activity for the cracking of n-heptane. The synthesized sample (NaYl) showed the Y zeolite crystallinity of 53% and PI zeolite crystallinity of 32%, and exhibited good thermal stability up to 880 C. The activity and the stability of HYl turned out to be lower than those of standard sample (HYs), but the toluene selectivity was higher. The conversion of n-heptane to toluene might be due to the metal oxide impurities, which was present in the raw materials and this indicates the potential application of this zeolite for the conversion of n-parafRn to aromatics. [Pg.197]

Figure 5.22 Influence of different reactor materials on selectivity for 1 -chloromethyl-2,4-diisocyanatobenzene and toluene-2,4-diisocyanate conversion [6],... Figure 5.22 Influence of different reactor materials on selectivity for 1 -chloromethyl-2,4-diisocyanatobenzene and toluene-2,4-diisocyanate conversion [6],...
A number of papers have appeared on the use of layered double hydroxides (e.g. Mg and Al containing oxides). A meixnerite-like catalyst has been reported to give 100% selectivity for diacetone alcohol from acetone at 0 C at close to thermodynamic equilibrium conversion of 23% (Tichit and Fajula, 1999). The side-chain alkylation of toluene with propylene to give isobutyl benzene (for ibuprofen) is a well-known example where Na/K alloy on Na2C03/K2C03 is used as the catalyst. [Pg.138]

In earlier work, Bhaumik and Kumar (1995) have reported that the use of two liquid phases in the oxidation of hydrophobic organic substances with aqueous H2O2 using titanium silicate as the catalyst not only enhances the rate of oxidation but also improves selectivity for species like toluene, anisole, and benzyl alcohol. For a single liquid phase acetonitrile was u.sed a solvent. The solid-liquid system gives high ortho selectivity. Thus, in the case of anisole the ratios of o to p for. solid-liquid and solid-liquid-liquid system were 2.22 1 and 0.35 1, respectively. [Pg.144]

Scott Oakes et al. (1999a) have reported a dramatic pressure-dependent enhancement of diastereoselectivity for sulphoxidation of cysteine and methionine derivatives by using SC CO2 rather than conventional solvents. In the case of a derivative of cysteine, toluene/ methylene chloride gave a 50-50 mixture of stereoisomeric forms. With SC CO2 and tert-butyl hydroperoxide, however, 95% selectivity for just one stereoisomer was realized. [Pg.174]

The polarity index is a measure of the polarity of the solvent, which is often the most important factor in the solvent choice for the particular application. In extraction processes, the tenet that like dissolves like (and conversely, opposites do not attract ) is the primary consideration in choosing the solvent for extraction, partitioning, and/or analytical conditions. For example, hexane often provides a selective extraction for nonpolar analytes, and toluene may provide more selectivity for aromatic analytes. [Pg.755]

There is some increase in selectivity with functionally substituted carbenes, but it is still not high enough to prevent formation of mixtures. Phenylchlorocarbene gives a relative reactivity ratio of 2.1 1 0.09 in insertion reactions with i-propylbenzene, ethylbenzene, and toluene.212 For cycloalkanes, tertiary positions are about 15 times more reactive than secondary positions toward phenylchlorocarbene.213 Carbethoxycarbene inserts at tertiary C—H bonds about three times as fast as at primary C—H bonds in simple alkanes.214 Owing to low selectivity, intermolecular insertion reactions are seldom useful in syntheses. Intramolecular insertion reactions are of considerably more value. Intramolecular insertion reactions usually occur at the C—H bond that is closest to the carbene and good yields can frequently be achieved. Intramolecular insertion reactions can provide routes to highly strained structures that would be difficult to obtain in other ways. [Pg.936]

When organic cations (e.g., cationic tensides) are employed, clay organo-complexes are formed, which can be used in organic solvents. A Pd-hexadecy-lammonium montmorillonite catalyst was prepared by the reduction of Pd(OAc)2 by ethanol in the interlamellar space. At small ethanol concentrations in toluene, selective interlamellar sorption of ethanol was established consequently, the reduction also occurred only in the interlamellar space.160 The catalyst was used for the hydrogenation of alkenes.161... [Pg.259]

Toluene alkylation with isopropyl alcohol was chosen as the test reaction as we can follow in a detail the effect of zeolite structural parameters on the toluene conversion, selectivity to cymenes, selectivity to para-cymene, and isopropyl/n-propyl ratio. It should be stressed that toluene/isopropyl alcohol molar ratio used in the feed was 9.6, which indicates the theoretical toluene conversion around 10.4 %. As you can see from Fig. 2 conversion of toluene over SSZ-33 after 15 min of T-O-S is 21 %, which is almost two times higher than the theoretical toluene conversion for alkylation reaction. The value of toluene conversion over SSZ-33 is influenced by a high rate of toluene disproportionation. About 50 % of toluene converted is transformed into benzene and xylenes. Toluene conversion over zeolites Beta and SSZ-35 is around 12 %, which is due to a much smaller contribution of toluene disproportionation to the overall toluene conversion. A slight increase in toluene conversion over ZSM-5 zeolite is connected with the fact that desorption and transport of products in toluene alkylation with isopropyl alcohol is the rate controlling step of this reaction [9]... [Pg.277]

In toluene disproportionation the highest toluene conversion was achieved over SSZ-33 due to a high acidity combined with 3-D channel system. High toluene conversion over SSZ-35 results from its strong acidity and large reaction volumes in 18-MR cavities. Toluene conversion in the alkylation with isopropyl alcohol is influenced by a high rate of competitive toluene disproportionation over SSZ-33. ZSM-5 exhibits a high p-selectivity for /7-isopropyl toluene, which seems to be connected with diffusion constraints in the channel system of this zeolite. [Pg.278]

The results from the batch reactor and the fixed-bed reactor agree in terms of activity and selectivity for the different zeolites. The activity of Pd/H-MCM-22 is higher than that of Pd/H-ZSM-5, however, the selectivity to ethyltoluenes is much higher for Pd/H-ZSM-5. The yield of the desired ethyltoluene products is also higher with the ZSM-5 catalyst since it is less active for toluene disproportionation. However, with regard to the achievable yields and selectivities of the desired ethyltoluenes, the batch reactor is clearly inferior to the fixed-bed reactor. The reason might be the excess of toluene in the batch reactor. [Pg.368]

The meta-selectivity for toluene activation, observed for both systems, is very unusual (Fig. 5). Also remarkable is the switch in selectivity from aryl C-H activation to benzylic activation inp-xylene, just by changing the chelate ligand from the diimine equipped with trifluoromethyl substitutents in the meta-positions of the phenyl residue to the diimine bearing methyl substituents in the ortho-positions (Fig. 5). The authors suggested that the C-H bond activation is reversible and the isomeric a-methane complexes are in equilibrium prior to the substitution of... [Pg.294]

Pt catalysts was the dehydrogenation to toluene, which was independent of catalyst particle size. Meanwhile, the selectivity for RO of MCH on iridium and ruthenium was 50% and RO was found to occur only at unsubstituted C-C bonds. [Pg.55]

As a result of steric constraints imposed by the channel structure of ZSM-5, new or improved aromatics conversion processes have emerged. They show greater product selectivities and reaction paths that are shifted significantly from those obtained with constraint-free catalysts. In xylene isomerization, a high selectivity for isomerization versus disproportionation is shown to be related to zeolite structure rather than composition. The disproportionation of toluene to benzene and xylene can be directed to produce para-xylene in high selectivity by proper catalyst modification. The para-xylene selectivity can be quantitatively described in terms of three key catalyst properties, i.e., activity, crystal size, and diffusivity, supporting the diffusion model of para-selectivity. [Pg.272]

In view of the difficulty of measuring the diffusivity of o-xylene at the reaction temperature, 482°c, we have used the diffusivity determined at 120°C. For a series of ZSM-5 catalysts, the two D-values should be proportional to each other. Para-xylene selectivities at constant toluene conversion for catalysts prepared from the same zeolite preparation (constant r) with two different modifiers are shown in Figure 11. The large effect of the modifier on diffusivity, and on para-selectivity, is apparent. [Pg.288]

Micelles from PS-P2VP-PMMA triblock copolymers dissolved in toluene were reported by Tsitsilianis and Sfika [288]. Since the organic solvent was selective for both the PS and PMMA blocks, these authors observed the formation of spherical micelles with a dense P2VP core, surrounded by PS and PMMA chains in the corona. It was shown that Z and the micellar size were strongly influenced by the length of the P2VP middle block. [Pg.127]

Several soil-vapor monitoring techniques are currendy being used to define areas of volatile organic chemical contamination. These procedures usually involve the collection of representative samples of the soil gas for analysis of indicator compounds. Maps marked with concentration contours of these indicator compounds can be used to identify potential sources to delineate the contaminated area. Indicator compounds (usually the more volatile compounds) are selected for each specific situation. For gasoline contamination, the compounds are usually benzene, toluene, ethylbenzene, and total xylene (BTEX). In the case of a fuel oil spill, the most commonly used indicator is naphthalene. Some laboratories have adapted the laboratory procedures used for quality analysis of wellhead condensate (i.e., normal paraffins) to include light-end (<8 carbons) molecular analysis. [Pg.143]


See other pages where Toluene selectivity for is mentioned: [Pg.15]    [Pg.83]    [Pg.430]    [Pg.304]    [Pg.15]    [Pg.83]    [Pg.430]    [Pg.304]    [Pg.70]    [Pg.177]    [Pg.185]    [Pg.413]    [Pg.585]    [Pg.129]    [Pg.182]    [Pg.116]    [Pg.354]    [Pg.169]    [Pg.153]    [Pg.256]    [Pg.184]    [Pg.42]    [Pg.230]    [Pg.64]    [Pg.257]    [Pg.283]    [Pg.470]   
See also in sourсe #XX -- [ Pg.258 ]




SEARCH



© 2024 chempedia.info