Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactors dehydrogenation

L. D. Schmidt, Millisecond Catalytic Wall Reactors Dehydrogenation... [Pg.44]

In contrast to the studies on gas- and vapor-phase hydrogenation reactions utilizing dense Pd-based membrane reactors, dehydrogenation reactions have been consistently observed to benefit from the concept of a membrane reactor. In almost all cases the reaction conversion is increased. This is attributed to the well known favorable effect of equilibrium displacement applied to dehydrogenation reactions which are mostly limited by the equilibrium barrier. [Pg.326]

Although the selectivity of isopropyl alcohol to acetone via vapor-phase dehydrogenation is high, there are a number of by-products that must be removed from the acetone. The hot reactor effluent contains acetone, unconverted isopropyl alcohol, and hydrogen, and may also contain propylene, polypropylene, mesityl oxide, diisopropyl ether, acetaldehyde, propionaldehyde, and many other hydrocarbons and carbon oxides (25,28). [Pg.96]

Olefin—Paraffin Separation. The catalytic dehydrogenation of / -paraffins offers a route to the commercial production of linear olefins. Because of limitations imposed by equiUbrium and side reactions, conversion is incomplete. Therefore, to obtain a concentrated olefin product, the olefins must be separated from the reactor effluent (81—85), and the unreacted / -paraffins must be recycled to the catalytic reactor for further conversion. [Pg.300]

The dehydrogenation of 2-butanol is conducted in a multitube vapor-phase reactor over a zinc oxide (20—23), copper (24—27), or brass (28) catalyst, at temperatures of 250—400°C, and pressures slightly above atmospheric. The reaction is endothermic and heat is suppHed from a heat-transfer fluid on the shell side of the reactor. A typical process flow sheet is shown in Figure 1 (29). Catalyst life is three to five years operating in three to six month cycles between oxidative reactivations (30). Catalyst life is impaired by exposure to water, butene oligomers, and di-j -butyl ether (27). [Pg.489]

Fluidized bed dehydrogenation technology is more prevalent in the former Soviet Union. A continuous fluidized-bed reactor system is used with a... [Pg.126]

The main by-products ia the dehydrogenation reactor are toluene and benzene. The formation of toluene accounts for the biggest yield loss, ie, approximately 2% of the styrene produced when a high selectivity catalyst is used. Toluene is formed mostly from styrene by catalytic reactions such as the foUowiag ... [Pg.481]

Fig. 4. Manufacture of styrene by adiabatic dehydrogenation of ethylbenzene A, steam superheater B, reactor section C, feed—effluent exchanger D,... Fig. 4. Manufacture of styrene by adiabatic dehydrogenation of ethylbenzene A, steam superheater B, reactor section C, feed—effluent exchanger D,...
Fig. 5. Purification of styrene in the dehydrogenation reactor effluent in the FinaBadger styrene process A, ben2ene—toluene column B, ethylbenzene recycle column C, styrene finishing column and D, residue finishing. Courtesy of The Badger Company, Inc. Fig. 5. Purification of styrene in the dehydrogenation reactor effluent in the FinaBadger styrene process A, ben2ene—toluene column B, ethylbenzene recycle column C, styrene finishing column and D, residue finishing. Courtesy of The Badger Company, Inc.
The benzene—toluene fraction is further fractionated in a small column, not shown in Figure 5, to recover benzene for recycle to the alkylation unit and toluene for sale. This toluene can be converted to benzene by hydrodealkylation but the high selectivity catalyst has reduced the formation of toluene in the dehydrogenation reactor to the point where the cost of installing a hydrodealkylation unit is difficult to justify even in a large styrene plant. [Pg.484]

A similar but somewhat less ambitious approach is to carry out dehydrogenation of ethylbenzene and oxidation of the hydrogen product alternately in separate reactors containing different catalysts ... [Pg.484]

Ethyltoluene is manufactured by aluminum chloride-cataly2ed alkylation similar to that used for ethylbenzene production. All three isomers are formed. A typical analysis of the reactor effluent is shown in Table 9. After the unconverted toluene and light by-products are removed, the mixture of ethyltoluene isomers and polyethyltoluenes is fractionated to recover the meta and para isomers (bp 161.3 and 162.0°C, respectively) as the overhead product, which typically contains 0.2% or less ortho isomer (bp 165.1°C). This isomer separation is difficult but essential because (9-ethyltoluene undergoes ring closure to form indan and indene in the subsequent dehydrogenation process. These compounds are even more difficult to remove from vinyltoluene, and their presence in the monomer results in inferior polymers. The o-ethyltoluene and polyethyltoluenes are recovered and recycled to the reactor for isomerization and transalkylation to produce more ethyltoluenes. Fina uses a zeoHte-catalyzed vapor-phase alkylation process to produce ethyltoluenes. [Pg.489]

The dehydrogenation of the mixture of m- and -ethyltoluenes is similar to that of ethylbenzene, but more dilution steam is required to prevent rapid coking on the catalyst. The recovery and purification of vinyltoluene monomer is considerably more difficult than for styrene owing to the high boiling point and high rate of thermal polymerization of the former and the complexity of the reactor effluent, which contains a large number of by-products. Pressures as low as 2.7 kPa (20 mm Hg) are used to keep distillation temperatures low even in the presence of polymerization inhibitor. The finished vinyltoluene monomer typically has an assay of 99.6%. [Pg.489]

Dehydrogenation of /i-Butane. Dehydrogenation of / -butane [106-97-8] via the Houdry process is carried out under partial vacuum, 35—75 kPa (5—11 psi), at about 535—650°C with a fixed-bed catalyst. The catalyst consists of aluminum oxide and chromium oxide as the principal components. The reaction is endothermic and the cycle life of the catalyst is about 10 minutes because of coke buildup. Several parallel reactors are needed in the plant to allow for continuous operation with catalyst regeneration. Thermodynamics limits the conversion to about 30—40% and the ultimate yield is 60—65 wt % (233). [Pg.347]


See other pages where Reactors dehydrogenation is mentioned: [Pg.454]    [Pg.178]    [Pg.454]    [Pg.178]    [Pg.44]    [Pg.186]    [Pg.67]    [Pg.96]    [Pg.459]    [Pg.458]    [Pg.207]    [Pg.52]    [Pg.106]    [Pg.126]    [Pg.126]    [Pg.127]    [Pg.520]    [Pg.525]    [Pg.526]    [Pg.526]    [Pg.526]    [Pg.477]    [Pg.478]    [Pg.478]    [Pg.481]    [Pg.481]    [Pg.482]    [Pg.482]    [Pg.482]    [Pg.482]    [Pg.483]    [Pg.484]    [Pg.484]    [Pg.484]    [Pg.485]    [Pg.490]    [Pg.181]    [Pg.41]    [Pg.368]   
See also in sourсe #XX -- [ Pg.356 , Pg.472 ]




SEARCH



© 2024 chempedia.info