Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Titanium chirality

Contrary to the asymmetric epoxidation of allylic alcohols, the presence of water in this reaction is crucial for the enantioselection. Nevertheless, the main drawback of this method was the use of a stoichiometric amount of titanium and the use of tert-butyl hydroperoxide (TBHP) as oxidant. Efforts have been devoted to the development of more sustainable processes focusing on catalytic reactions and on the nature of oxidising agent. In 1987, Kagan and coworkers reported a catalytic version using as low as 10 mol% of titanium chiral complex in the presence of activated molecular sieves (MS). It is noteworthy that they also improved the process by using less-explosive and less-reactive cumene hydroperoxide as oxidant. A few years later, the group of Uemura developed a complementary catalytic system based on the... [Pg.143]

Although tremendous advances in the catalytic Pauson-Khand reaction have been made, the development of an asymmetric version did not share the same degree of success. Several asymmetric Pauson-Khand reactions were reported using chiral auxiliaries. However, those systems required stoichiometric amounts of cobalt as well as the chiral source. Attempts at using a catalytic amount of cobalt did not give satisfactory results. By contrast, the use of titanium chiral catalyst S,Sy (EBTHI)Ti(CO)2 (EBTHI = ethylene-l,2-bis(tiM,5,6,7-tetrahydro-l-indenyl)... [Pg.234]

The use of different corresponding ytterbium complexes were also studied in the formation of 48 with more or less efficiency depending on the nature of the chiral ligand involved [55]. Zirconium and titanium chiral alkoxides were also successful, giving 48 in moderate to high enantioselectivities, respectively [56]. [Pg.323]

Silyl enol ethers derived from acetone undergo ene reactions rather than aldol reactions to give a-fimctionalyzed enol silyl ethers. Lewis acidic chiral titanium, chiral chromium, and chiral palladium catalysts have been developed to allow synthesis of silyl enol ethers having a chiral center (Scheme 3-60). [Pg.417]

The first practical method for asymmetric epoxidation of primary and secondary allylic alcohols was developed by K.B. Sharpless in 1980 (T. Katsuki, 1980 K.B. Sharpless, 1983 A, B, 1986 see also D. Hoppe, 1982). Tartaric esters, e.g., DET and DIPT" ( = diethyl and diisopropyl ( + )- or (— )-tartrates), are applied as chiral auxiliaries, titanium tetrakis(2-pro-panolate) as a catalyst and tert-butyl hydroperoxide (= TBHP, Bu OOH) as the oxidant. If the reaction mixture is kept absolutely dry, catalytic amounts of the dialkyl tartrate-titanium(IV) complex are suflicient, which largely facilitates work-up procedures (Y. Gao, 1987). Depending on the tartrate enantiomer used, either one of the 2,3-epoxy alcohols may be obtained with high enantioselectivity. The titanium probably binds to the diol grouping of one tartrate molecule and to the hydroxy groups of the bulky hydroperoxide and of the allylic alcohol... [Pg.124]

Chiral Titanium Complexes. Chiral titanium complexes are useful for the enantioselective addition of nucleophiles to carbonyl groups ... [Pg.150]

The advantages of titanium complexes over other metallic complexes is high selectivity, which can be readily adjusted by proper selection of ligands. Moreover, they are relative iaert to redox processes. The most common synthesis of chiral titanium complexes iavolves displacement of chloride or alkoxide groups on titanium with a chiral ligand, L ... [Pg.151]

The chemistry of complexes having achiral ligands is based solely on the geometrical arrangement on titanium. Optically active alcohols are the most favored monodentate ligands. Cyclopentadienyl is also well suited for chiral modification of titanium complexes. [Pg.151]

One of the most famous chiral titanium complexes is the Sharpless catalyst (16), based on a diisopropyl tartarate complex. Nmr studies suggest that the complex is dimeric ia nature (146). An excellent summary of chiral titanium complexes is available (147). [Pg.151]

The Sharpless-Katsuki asymmetric epoxidation reaction (most commonly referred by the discovering scientists as the AE reaction) is an efficient and highly selective method for the preparation of a wide variety of chiral epoxy alcohols. The AE reaction is comprised of four key components the substrate allylic alcohol, the titanium isopropoxide precatalyst, the chiral ligand diethyl tartrate, and the terminal oxidant tert-butyl hydroperoxide. The reaction protocol is straightforward and does not require any special handling techniques. The only requirement is that the reacting olefin contains an allylic alcohol. [Pg.50]

In 1980, Katsuki and Sharpless communicated that the epoxidation of a variety of allylic alcohols was achieved in exceptionally high enantioselectivity with a catalyst derived from titanium(IV) isopropoxide and chiral diethyl tartrate. This seminal contribution described an asymmetric catalytic system that not only provided the product epoxide in remarkable enantioselectivity, but showed the immediate generality of the reaction by examining 5 of the 8 possible substitution patterns of allylic alcohols all of which were epoxidized in >90% ee. Shortly thereafter. Sharpless and others began to illustrate the... [Pg.50]

Yamamoto et al. have reported a chiral helical titanium catalyst, 10, prepared from a binaphthol-derived chiral tetraol and titanium tetraisopropoxide with azeotropic removal of 2-propanol [16] (Scheme 1.22, 1.23, Table 1.9). This is one of the few catalysts which promote the Diels-Alder reaction of a-unsubstituted aldehydes such as acrolein with high enantioselectivity. Acrolein reacts not only with cyclo-pentadiene but also 1,3-cyclohexadiene and l-methoxy-l,3-cyclohexadiene to afford cycloadducts in 96, 81, and 98% ee, respectively. Another noteworthy feature of the titanium catalyst 10 is that the enantioselectivity is not greatly influenced by reaction temperature (96% ee at... [Pg.18]

C, 92% ee at -20 °C, 88% ee at 0°C in the reaction of acrolein and cyclopen-tadiene). This is unusual for metal-catalyzed asymmetric reactions, with only few similar examples. The titanium catalyst 10 acts as a suitable chiral template for the conformational fixing of a,/ -unsaturated aldehydes, thereby enabling efficient enantioface recognition, irrespective of temperature. [Pg.18]

Another chiral titanium reagent, 11, was developed by Corey et al. [17] (Scheme 1.24). The catalyst was prepared from chiral ris-N-sulfonyl-2-amino-l-indanol and titanium tetraisopropoxide with removal of 2-propanol, followed by treatment with one equivalent of SiCl4, to give the catalytically-active yellow solid. This catalyst is thought not to be a simple monomer, but rather an aggregated species, as suggested by NMR study. Catalyst 11 promotes the Diels-Alder reaction of a-bro-moacrolein with cyclopentadiene or isoprene. [Pg.18]

Mikami et al. have reported that the chiral titanium reagent 12 derived from bi-naphthol and TiCl2(0-i-Pr)2 catalyzes the Diels-Adder reaction of a-bromoacrolein or methacrolein with isoprene or 1-methoxy-l,3-butadiene to afford the cycloadducts with high enantioselectivity [18] (Scheme 1.25). [Pg.19]

Another issue important to the success of this chiral titanium reagent 31 was the discovery of a marked solvent effect. When the fumaric acid derivative is reacted with isoprene in the presence of 10 mol% of the titanium reagent 31 in toluene, poor optical purity results (36-68% ee). Interestingly the optical purity of the adduct greatly increased in the order benzene, toluene, xylenes, and mesitylene, with 92% ee obtained in the last. Mesitylene is difficult to remove, because of its high boiling point, and other solvents were screened in detail. As a result, the mixed solvent system toluene petroleum ether (1 1) was discovered to be very effective. [Pg.36]

The Diels-Alder reaction catalyzed by this chiral titanium catalyst 31 has wide generality (Scheme 1.53, 1.54, Table 1.22, 1.23). Acryloyl- and fumaroyl-oxazolidinones react with isoprene giving cycloadducts in high optical purity. 2-Ethylthio-l,3-buta-diene can also be successfully employed as the diene [42]. [Pg.36]

For the construction of oxygen-functionalized Diels-Alder products, Narasaka and coworkers employed the 3-borylpropenoic acid derivative in place of 3-(3-acet-oxypropenoyl)oxazolidinone, which is a poor dienophile in the chiral titanium-catalyzed reaction (Scheme 1.55, Table 1.24). 3-(3-Borylpropenoyl)oxazolidinones react smoothly with acyclic dienes to give the cycloadducts in high optical purity [43]. The boryl group was converted to an hydroxyl group stereospecifically by oxidation, and the alcohol obtained was used as the key intermediate in a total synthesis of (-i-)-paniculide A [44] (Scheme 1.56). [Pg.36]

Application of this catalytic process was extended to asymmetric intramolecular Diels-Alder reactions. Synthetically useful intermediates with octalin and decalin skeletons were obtained in high optical purity by use of a catalytic amount of the chiral titanium reagent [45] (Scheme 1.57, Table 1.25). The core part of the mevi-nic acids was enantioselectively synthesized by use of this asymmetric intramolecular reaction [46] (Scheme 1.58). [Pg.37]

A chiral titanium complex with 3-cinnamoyl-l,3-oxazolidin-2-one was isolated by Jagensen et al. from a mixture of TiCl 2(0-i-Pr)2 with (2R,31 )-2,3-0-isopropyli-dene-l,l,4,4-tetraphenyl-l,2,3,4-butanetetrol, which is an isopropylidene acetal analog of Narasaka s TADDOL [48]. The structure of this complex was determined by X-ray structure analysis. It has the isopropylidene diol and the cinnamoyloxazolidi-none in the equatorial plane, with the two chloride ligands in apical (trans) position as depicted in the structure A, It seems from this structure that a pseudo-axial phenyl group of the chiral ligand seems to block one face of the coordinated cinnamoyloxazolidinone. On the other hand, after an NMR study of the complex in solution, Di Mare et al, and Seebach et al, reported that the above trans di-chloro complex A is a major component in the solution but went on to propose another minor complex B, with the two chlorides cis to each other, as the most reactive intermediate in this chiral titanium-catalyzed reaction [41b, 49], It has not yet been clearly confirmed whether or not the trans and/or the cis complex are real reactive intermediates (Scheme 1.60). [Pg.39]

Among the many chiral Lewis acid catalysts described so far, not many practical catalysts meet these criteria. For a,/ -unsaturated aldehydes, Corey s tryptophan-derived borane catalyst 4, and Yamamoto s CBA and BLA catalysts 3, 7, and 8 are excellent. Narasaka s chiral titanium catalyst 31 and Evans s chiral copper catalyst 24 are outstanding chiral Lewis acid catalysts of the reaction of 3-alkenoyl-l,2-oxazolidin-2-one as dienophile. These chiral Lewis acid catalysts have wide scope and generality compared with the others, as shown in their application to natural product syntheses. They are, however, still not perfect catalysts. We need to continue the endeavor to seek better catalysts which are more reactive, more selective, and have wider applicability. [Pg.48]

I would like to thank Professors E. J. Corey and K. Narasaka for giving me a chance to work with super-reactive chiral catalyst 9 and TADDOL-based chiral titanium catalyst 31, respectively. [Pg.53]

The interest in chiral titanium(IV) complexes as catalysts for reactions of carbonyl compounds has, e.g., been the application of BINOL-titanium(IV) complexes for ene reactions [8, 19]. In the field of catalytic enantioselective cycloaddition reactions, methyl glyoxylate 4b reacts with isoprene 5b catalyzed by BINOL-TiX2 20 to give the cycloaddition product 6c and the ene product 7b in 1 4 ratio enantio-selectivity is excellent - 97% ee for the cycloaddition product (Scheme 4.19) [28]. [Pg.165]

A remarkable change in reaction course is notable when changing the metal from aluminum to titanium for cydoaddition reactions using BINOL as the chiral ligand. When the chiral aluminum(III) catalyst is applied the cydoaddition product is the major product, whereas for the chiral titanium(IV) catalyst, the ene product is the major product. The reason for this significant change in reaction course is not fully understood. Maybe the glyoxylate coordinates to the former Le-... [Pg.166]

A chiral titanium(IV) complex has also been used by Wada et al. for the intermole-cular cycloaddition of ( )-2-oxo-l-phenylsulfonyl-3-alkenes 45 with enol ethers 46 using the TADDOL-TiX2 (X=C1, Br) complexes 48 as catalysts in an enantioselective reaction giving the dihydropyrans 47 as shown in Scheme 4.32 [47]. The reaction depends on the anion of the catalyst and the best yield and enantioselectivity were found for the TADDOL-TiBr2 up to 97% ee of the dihydropyrans 47 was obtained. [Pg.178]

The effect of the metals used was then examined (Table 5.4). When the group 4 metals, titanium, zirconium, and hafnium, were screened it was found that a chiral hafnium catalyst gave high yields and enantioselectivity in the model reaction of aldimine lb with 7a, while lower yields and enantiomeric excesses were obtained using a chiral titanium catalyst [17]. [Pg.192]

Several titanium(IV) complexes are efficient and reliable Lewis acid catalysts and they have been applied to numerous reactions, especially in combination with the so-called TADDOL (a, a,a, a -tetraaryl-l,3-dioxolane-4,5-dimethanol) (22) ligands [53-55]. In the first study on normal electron-demand 1,3-dipolar cycloaddition reactions between nitrones and alkenes, which appeared in 1994, the catalytic reaction of a series of chiral TiCl2-TADDOLates on the reaction of nitrones 1 with al-kenoyloxazolidinones 19 was developed (Scheme 6.18) [56]. These substrates have turned out be the model system of choice for most studies on metal-catalyzed normal electron-demand 1,3-dipolar cycloaddition reactions of nitrones as it will appear from this chapter. When 10 mol% of the catalyst 23a was applied in the reaction depicted in Scheme 6.18 the reaction proceeded to give a yield of up to 94% ee after 20 h. The reaction led primarily to exo-21 and in the best case an endo/ exo ratio of 10 90 was obtained. The chiral information of the catalyst was transferred with a fair efficiency to the substrates as up to 60% ee of one of the isomers of exo3 was obtained [56]. [Pg.226]

A quite different type of titanium catalyst has been used in an inverse electron-demand 1,3-dipolar cycloaddition. Bosnich et al. applied the chiral titanocene-(OTf)2 complex 32 for the 1,3-dipolar cycloaddition between the cyclic nitrone 14a and the ketene acetal 2c (Scheme 6.25). The reaction only proceeded in the presence of the catalyst and a good cis/trans ratio of 8 92 was obtained using catalyst 32, however, only 14% ee was observed for the major isomer [70]. [Pg.231]

It was our delight that the reactions catalyzed were activated even at -40 °C in the presence of a catalytic amount of achiral titanium catalysts (10 mol%) to afford the desilylacetylated 2-pyrazoline cycloadduct Na, l-acetyl-4-methyl-5-(2-oxo-3-oxazolidinylcarbonyl)-2-pyrazoline, in high yields as the far major product (Scheme 7.35). Although some chiral titanium TADDOlate catalysts were successfully applied to activate these reactions leading to the moderate enantioselectivities (up to 55% ee), the chemical yields were not satisfactory. [Pg.281]

An X-ray structure of the complex formed between 3-cinnamoyl-l,3-oxazohdin-2-one and a chiral TADDOL-Ti(IV) complex (see Chapters 1 and 6 by Hayashi and Gothelf, respectively) has been characterized [16]. The structure of this complex has the chiral TADDOLate and cinnamoyloxazohdinone ligands coordinated to titanium in the equatorial plane and the two chloride ligands in the axial plane and is similar to A in Fig. 8.8. The chiral discrimination was proposed to be due to... [Pg.310]


See other pages where Titanium chirality is mentioned: [Pg.101]    [Pg.328]    [Pg.272]    [Pg.938]    [Pg.101]    [Pg.328]    [Pg.272]    [Pg.938]    [Pg.94]    [Pg.66]    [Pg.367]    [Pg.348]    [Pg.18]    [Pg.19]    [Pg.25]    [Pg.36]    [Pg.39]    [Pg.45]    [Pg.45]    [Pg.126]    [Pg.152]    [Pg.161]    [Pg.227]   
See also in sourсe #XX -- [ Pg.132 ]




SEARCH



Asymmetric oxidation with chiral titanium complexe

Carboxylic acids, syn-a-methyl-p-hydroxyaldol reaction titanium enolates, chiral auxiliary

Chiral titanium catalyst, Diels-Alder reaction

Chiral titanium catalysts

Chiral titanium complex, oxidation

Chiral titanium complexes asymmetric oxidation with

Chiral titanium complexes oxidation of sulfides with

Chiral titanium hydride complexes

Chiral titanium reagents, development

Chirality chiral titanium complexes

Esters, 2-hydroxy chiral titanium enolates

Ketones, ethyl titanium enolate, chiral auxiliary

Self-supported chiral titanium cluster

Titanium catalysts chiral auxiliaries

Titanium chiral complex

Titanium complexe chiral ligand

Titanium dendritic chiral

Titanium reagents, chirally modified

Titanium reagents, chirally modified carbonyl compounds

Titanium reagents, chirally modified enantioselective addition

© 2024 chempedia.info