Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral titanium catalyst, Diels-Alder reaction

Finally, the discovery of exceptionally efficient catalysts for solvent-free enantioselective hetero-Diels-Alder reactions was made possible by a combinatorial approach.121 The object was to find a chiral titanium catalyst for the reaction of aldehydes (51) with Danishefsky s diene (91), with formation of cycloadduct (92) in >99% enantipurity (Equation (11)). [Pg.543]

Yamamoto et al. have reported a chiral helical titanium catalyst, 10, prepared from a binaphthol-derived chiral tetraol and titanium tetraisopropoxide with azeotropic removal of 2-propanol [16] (Scheme 1.22, 1.23, Table 1.9). This is one of the few catalysts which promote the Diels-Alder reaction of a-unsubstituted aldehydes such as acrolein with high enantioselectivity. Acrolein reacts not only with cyclo-pentadiene but also 1,3-cyclohexadiene and l-methoxy-l,3-cyclohexadiene to afford cycloadducts in 96, 81, and 98% ee, respectively. Another noteworthy feature of the titanium catalyst 10 is that the enantioselectivity is not greatly influenced by reaction temperature (96% ee at... [Pg.18]

Another chiral titanium reagent, 11, was developed by Corey et al. [17] (Scheme 1.24). The catalyst was prepared from chiral ris-N-sulfonyl-2-amino-l-indanol and titanium tetraisopropoxide with removal of 2-propanol, followed by treatment with one equivalent of SiCl4, to give the catalytically-active yellow solid. This catalyst is thought not to be a simple monomer, but rather an aggregated species, as suggested by NMR study. Catalyst 11 promotes the Diels-Alder reaction of a-bro-moacrolein with cyclopentadiene or isoprene. [Pg.18]

The Diels-Alder reaction catalyzed by this chiral titanium catalyst 31 has wide generality (Scheme 1.53, 1.54, Table 1.22, 1.23). Acryloyl- and fumaroyl-oxazolidinones react with isoprene giving cycloadducts in high optical purity. 2-Ethylthio-l,3-buta-diene can also be successfully employed as the diene [42]. [Pg.36]

Inverse electron-demand Diels-Alder reaction of (E)-2-oxo-l-phenylsulfo-nyl-3-alkenes 81 with enolethers, catalyzed by a chiral titanium-based catalyst, afforded substituted dihydro pyranes (Equation 3.27) in excellent yields and with moderate to high levels of enantioselection [81]. The enantioselectivity is dependent on the bulkiness of the Ri group of the dienophile, and the best result was obtained when Ri was an isopropyl group. Better reaction yields and enantioselectivity [82, 83] were attained in the synthesis of substituted chiral pyranes by cycloaddition of heterodienes 82 with cyclic and acyclic enolethers, catalyzed by C2-symmetric chiral Cu(II) complexes 83 (Scheme 3.16). [Pg.124]

Annual Volume 71 contains 30 checked and edited experimental procedures that illustrate important new synthetic methods or describe the preparation of particularly useful chemicals. This compilation begins with procedures exemplifying three important methods for preparing enantiomerically pure substances by asymmetric catalysis. The preparation of (R)-(-)-METHYL 3-HYDROXYBUTANOATE details the convenient preparation of a BINAP-ruthenium catalyst that is broadly useful for the asymmetric reduction of p-ketoesters. Catalysis of the carbonyl ene reaction by a chiral Lewis acid, in this case a binapthol-derived titanium catalyst, is illustrated in the preparation of METHYL (2R)-2-HYDROXY-4-PHENYL-4-PENTENOATE. The enantiomerically pure diamines, (1 R,2R)-(+)- AND (1S,2S)-(-)-1,2-DIPHENYL-1,2-ETHYLENEDIAMINE, are useful for a variety of asymmetric transformations hydrogenations, Michael additions, osmylations, epoxidations, allylations, aldol condensations and Diels-Alder reactions. Promotion of the Diels-Alder reaction with a diaminoalane derived from the (S,S)-diamine is demonstrated in the synthesis of (1S,endo)-3-(BICYCLO[2.2.1]HEPT-5-EN-2-YLCARBONYL)-2-OXAZOLIDINONE. [Pg.266]

Perhaps the most attractive method of introducing enantioselectivity into the Diels-Alder reaction is to use a chiral catalyst in the form of a Lewis acidic metal complex. In recent years, this area has shown the greatest progress, with the introduction of many excellent catalytic processes. Quite a number of ligand-metal combinations have been evaluated for their potential as chiral catalysts in Diels-Alder reactions. The most commonly used metals are boron, titanium, and aluminum. Copper, magnesium, and lanthanides have also been used in asymmetric catalytic Diels-Alder reactions. [Pg.279]

Chiral titanium catalyst for asymmetric Diels-Alder reactions. A Japanese group2 recently reported that a chiral titanium reagent (1), prepared in situ from TiCl2(0-f-Pr)2 and the chiral diol 2, derived from L-tartaric acid, in combination... [Pg.232]

In 1990, Choudary [139] reported that titanium-pillared montmorillonites modified with tartrates are very selective solid catalysts for the Sharpless epoxidation, as well as for the oxidation of aromatic sulfides [140], Unfortunately, this research has not been reproduced by other authors. Therefore, a more classical strategy to modify different metal oxides with histidine was used by Moriguchi et al. [141], The catalyst showed a modest e.s. for the solvolysis of activated amino acid esters. Starting from these discoveries, Morihara et al. [142] created in 1993 the so-called molecular footprints on the surface of an Al-doped silica gel using an amino acid derivative as chiral template molecule. After removal of the template, the catalyst showed low but significant e.s. for the hydrolysis of a structurally related anhydride. On the same fines, Cativiela and coworkers [143] treated silica or alumina with diethylaluminum chloride and menthol. The resulting modified material catalyzed Diels-Alder reaction between cyclopentadiene and methacrolein with modest e.s. (30% e.e.). As mentioned in the Introduction, all these catalysts are not yet practically important but rather they demonstrate that amorphous metal oxides can be modified successfully. [Pg.500]

Brimble and coworkers172 reported the asymmetric Diels-Alder reactions between quinones 265 bearing a menthol chiral auxiliary and cyclopentadiene (equation 73). When zinc dichloride or zinc dibromide was employed as the Lewis acid catalyst, the reaction proceeded with complete endo selectivity, but with only moderate diastereofacial selectivity affording 3 1 and 2 1 mixtures of 266 and 267 (dominant diastereomer unknown), respectively. The use of stronger Lewis acids, such as titanium tetrachloride, led to the formation of fragmentation products. Due to the inseparability of the two diastereomeric adducts, it proved impossible to determine which one had been formed in excess. [Pg.391]

Engler and colleagues256 demonstrated that the way in which catalyst 406 is prepared has a strong effect on the regioselectivity and enantioselectivity of quinone Diels-Alder reactions. The most effective catalyst was prepared from a 1 1 1 mixture of titanium tetrachloride, titanium tetraisopropoxide and chiral diol 416. The cycloadditions of 2-methoxy-l,4-benzoquinones such as 414 with simple dienes to give adducts like 415 proceeded with high yields and enantioselectivities of up to 80% ee using this catalytic system (equation 123). [Pg.425]

Yamamoto and colleagues prepared chiral titanium catalyst 420 from titanium tetraisopropoxide and chiral binaphthol 419 (equation 126). This catalyst gave high asymmetric inductions in various Diels-Alder reactions of a,/J-unsaturated aldehydes with cyclopen-tadiene and 1,3-cyclohexadiene260. [Pg.425]

The Diels-Alder reaction of enantiomerically pure chiral aery he esters with cyclopen-tadiene leads to a pair of diastereomers. Their ratio depends strongly on the choice and amount of Lewis acid catalyst (Scheme 8)117. While titanium tetrachloride leads preferentially to the (2A )-diastercorner with high selectivity, ethyl aluminium dichloride gives the (2S )-diastereomer in only 56% de. [Pg.1049]

A catalytic asymmetric Diels-Alder reaction was developed by using 3-(3-borylpropenoyl)oxazolidin-2-ones 146. In the reactions of butadiene, isoprene, or 2-methyl-l,3-pentadiene and 146, in the presence of a chiral titanium catalyst 147, the cyclohexene derivatives 148 were formed. [Pg.372]

As shown by Table 7 above, the chiral titanium catalyst-MS 4A system is widely applicable to the reactions of a variety of dienophiles and dienes when a suitable alkyl substituted benzene is employed as a solvent, and synthetically important Diels-Alder adducts are prepared in high enantioselectivity by the present catalytic process. [Pg.301]

The initial work on the asymmetric [4-1-2] cycloaddition reactions of A -sulfinyl compounds and dienes was performed with chiral titanium catalysts, but low ee s were observed <2002TA2407, 2001TA2937, 2000TL3743>. A great improvement in the enantioselectivity for the reaction of AT-sulfinyl dienophiles 249 or 250 and acyclic diene 251 or 1,3-cyclohexadiene 252 was observed in the processes involving catalysis with Cu(ll) and Zn(ii) complexes of Evans bis(oxazolidinone) (BOX) ligands 253 and 254 <2004JOC7198> (Scheme 34). While the preparation of enantio-merically enriched hetero-Diels-Alder adduct 255 requires a stoichometric amount of chiral Lewis acid complex, a catalytic asymmetric synthesis of 44 is achieved upon the addition of TMSOTf. [Pg.552]

With Tartrate-Derived Chiral 1,4-Diol/Ti Complexes A catalytic asymmetric Diels-Alder reaction is promoted by the use of a chiral titanium catalyst prepared in situ from (Pr O TiC and a tartrate-derived (2.R,3.R)-l,l>4,4-tetraphenyl-2,3-0-(l-phenylethylidene)-l,2,3,4-butanetetrol. This chiral titanium catalyst, developed by Narasaka, has been successfully executed with oxazolidinone derivatives of 3-borylpropenoic acids as P-hydroxy acrylic acid equivalents [40] (Eq. 8A.21). The resulting chiral adduct can be utilized for the first asymmetric total synthesis of a highly oxygenated sesquiterpene, (-i-)-Paniculide. [Pg.476]

The asymmetric Diels-Alder reaction of diene and cyclopentenone derivatives can be promoted by a chiral titanium catalyst prepared in situ from (Pr 0)2TiCl2 and a tartrate-derived o.,a,a, a -tetraalkyl-l,3-dioxolane-4,5-dimethanol [54] (Eq. 8A.31). The resulting adducts can easily be tranformed to estrogens and progestogens. [Pg.480]

Mikami et al. studied the Diels-Alder reaction between a-methylstyrene and n-butyl glyoxylate catalyzed by a titanium binolate catalyst.76-78 Addition of 0.5 equivalents of (Zf)-BINOL to 1 equivalent of the racemic catalyst accelerated the reaction and gave the product with 89.8% ee (Scheme 20). Enantiopure catalyst derived solely from (/ )-BINOL gave the product with 94.5% ee. Here the amplification originates from the creation of a new chiral complex 9 of higher efficiency (rate and enantioselectivity) with respect to each enantiomer of the original racemic catalyst. [Pg.289]

Mukaiyama Aldol Condensation. As expected, the chiral titanium complex is also effective for a variety of carbon-carbon bond forming processes such as the aldol and the Diels-Alder reactions. The aldol process constitutes one of the most fundamental bond constructions in organic synthesis. Therefore the development of chiral catalysts that promote asymmetic aldol reactions in a highly stereocontrolled and truly catalytic fashion has attracted much attention, for which the silyl enol ethers of ketones or esters have been used as a storable enolate component (Mukaiyama aldol condensation). The BINOL-derived titanium complex BINOL-TiCl2 can be used as an efficient catalyst for the Mukaiyama-ty pe aldol reaction of not only ketone si ly 1 enol ethers but also ester silyl enol ethers with control of absolute and relative stereochemistry (eq 11). ... [Pg.93]

Chiral Lewis Acid. These chiral titanium reagents are widely used as chiral Lewis acid catalysts. The Diels-Alder reaction of methyl acrylate and cyclopentadiene affords the endo adduct in moderate enantioselectivity when a stoichiometric amount of the chiral titanium reagent (5) is employed (eq 6). Use of 3-(2-alkenoyl)-l,3-oxazolidin-2-ones as dienophiles greatly improves the optical purity of the cycloadduct when the 2-phenyl-2-methyl-1,3-dioxolane derivative (6) is used as a chiral ligand. Most importantly, the reaction proceeds with the same high enantioselectivity for the combination of various dienophiles and dienes even when 5-10 mol % of the chiral titanium reagent is employed in the presence of molecular sieves 4A (eqs 7 and 8). ... [Pg.246]

Narasaka has demonstrated that TADDOL-Ti dichloride prepared from TADDOL and Cl2Ti(OPr )2 in the presence of MS 4A acts as an efficient catalyst in asymmetric catalytic Diels-Alder reactions with oxazolidinone derivatives of acrylates, a results in extremely high enantioselectivity (Sch. 45) [112]. Narasaka reported an intramolecular version of the Diels-Alder reaction, the product of which can be transformed into key intermediates for the syntheses of dihydrocompactin and dihydromevinolin (Sch. 46) [113]. Seebach and Chapuis/Jurczak [114] independently reported asymmetric Diels-Alder reactions promoted by chiral TADDOL- and 3,3 -diphenyl BINOL-derived titanium alkoxides. Other types of chiral diol ligands were also explored by Hermann [115] and Oh [116]. [Pg.826]

Interestingly, the chiral titanium complex derived from 6-Br-BINOL affords higher cis selectivity, enantioselectivity, and catalytic activity than the parent BINOL-Ti catalyst in the hetero Diels-Alder reactions of 1-methoxydienes with glyoxylate, but not with bromoacrolein (Sch. 49) [130]. [Pg.829]

As shown above, asymmetric catalysis of Diels-Alder reactions has been achieved by use of chiral titanium complexes bearing chiral diol ligands. Yamamoto has reported a chiral helical titanium complex derived from Ti(OPr )4 and a BINOL-derived tetraol ligand (Sch. 54) [134], The Diels-Alder products are obtained with uniformly high enantioselectivity, irrespective of the substituent pattern of a,/3-unsaturated aldehydes. Corey has also reported a new type of chiral titanium complex derived from an amino alcohol ligand (Sch. 55) [135]. The chiral titanium complex serves as an efficient asymmetric catalyst for the reaction of 2-bromoacrolein the Diels-Alder product is obtained with high enantioselectivity. [Pg.832]

Other important titanium alkoxide-based Lewis acids are Ti-TADDOLate (a,a,a, a -tetraaryl-l,3-dioxolane-4,5-dimethanol)ates, among the most effective chiral catalysts for several important asymmetric reactions. These will be discussed in the sections on polymer-supported Diels-Alder reactions (Section 21.10) and alkylations (Section 21.9). [Pg.950]

Kobayashi et al. developed chiral Lewis acids derived from A -benzyldiphenylproli-nol and boron tribromide and used these successfully as catalysts in enantioselective Diels-Alder reactions [89]. The corresponding polymeric catalyst 71 was prepared and used for the Diels-Alder reaction of cyclopentadiene with methacrolein [90]. Different polymeric catalysts 72, 73, 74 were prepared from supported chiral amino alcohols and diols fimctionalized with boron, aluminum and titanium [88,90]. In these polymers copolymerization of styrene with a chiral auxiliary containing two polymerizable groups is a new approach to the preparation of crosslinked chiral polymeric ligands. This chiral monomer unit acts as chiral ligand and as a crosslink. [Pg.967]

Scheme 1. In the presence of the asymmetric titanium catalyst (f)-6, which acts as chiral template for the fixation of a,y9-unsaturated aldehydes, the Diels-Alder reaction of cyclopentadiene 7 and acrolein 8 leads to the enr/o-adduct 9 (Ri=R2=H) in... Scheme 1. In the presence of the asymmetric titanium catalyst (f)-6, which acts as chiral template for the fixation of a,y9-unsaturated aldehydes, the Diels-Alder reaction of cyclopentadiene 7 and acrolein 8 leads to the enr/o-adduct 9 (Ri=R2=H) in...
Construction of useful structural models for these reactions, however, would require not only a full structural characterization of the Lewis acid, but also knowledge of the preferred conformation of the chiral ligands. In many cases the catalysts are generated in situ and the stoichiometry or the aggregation state of the Lewis acid are not well deflned. The latter point is particularly important since both titanium and aluminum alkoxides are known to form dimeric or polymeric species. 29 The well-characterized aluminum Lewis acid (52) has b n reported to catalyze hetero Diels-Alder reactions of aldehydes with high enantioselectivity (Figure 44). 2°... [Pg.314]

Other use of the functionalized chiral BINOL includes the 5,5, 6,6, 7, 7, 8,8 -octahydro derivative developed by Chan and coworkers, the titanium complex of which is more effective than BINOL in the enantioselective addition of triethylaluminum and diethylzinc a 4,4, 6,6 -tetrakis(perfluorooctyl) BINOL ligand developed for easy separation of the product and catalyst using fluorous solvents for the same zinc reaction an aluminum complex of 6,6 -disubstituted-2,2 -biphenyldiols used by Harada and coworkers in the asymmetric Diels-Alder reaction a titanium complex of (5 )-5,5, 6,6, 7,7, 8,8 -octafluoro BINOL employed by Yudin and coworkers in the diethylzinc addition, in the presence of which the reaction of the enantiomeric (/f)-BINOL is promoted . [Pg.697]


See other pages where Chiral titanium catalyst, Diels-Alder reaction is mentioned: [Pg.94]    [Pg.18]    [Pg.25]    [Pg.36]    [Pg.45]    [Pg.45]    [Pg.194]    [Pg.591]    [Pg.207]    [Pg.281]    [Pg.290]    [Pg.706]    [Pg.280]    [Pg.275]    [Pg.1217]    [Pg.591]   


SEARCH



Catalysts Diels-Alder

Catalysts titanium

Chiral catalysts

Chiral catalysts reactions

Chiral titanium catalysts

Chirality Diels-Alder reaction

Diels-Alder reactions chiral catalysts

Diels-Alder reactions titanium

Reactions chiral

Titanium catalysts reactions

Titanium chirality

Titanium reactions

© 2024 chempedia.info