Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Achiral ligands

With the chiral diamine (S,S)-20 as a co-catalyst full conversion was obtained in all cases, indicating that the amine has a pronounced influence on reactivity and selectivity (entries 9-14). The combination (R Rc)-4ael/(S,S)-20 afforded 18a as an almost racemic mixture (entry 9). The value of 6% ee (R) obtained in this experiment reflects two opposite contributions. On one hand, the system chiral phosphorous ligand/achiral diamine (R Rc)-4ael/19 led to 18a with 65% ee (S) (entry 1). On the other hand, an ee value of 75% (R) in the hydrogenation of 1-acetonaphthone has been reported for the system achiral phosphine (PPh3)/(S,S)-20 [41] This indicates that two inductions are canceled in an almost additive way in the mixed system. [Pg.266]

Chiral carbon atoms are common, but they are not the only possible centers of chirality. Other possible chiral tetravalent atoms are Si, Ge, Sn, N, S, and P, while potential trivalent chiral atoms, in which non-bonding electrons occupy the position of the fourth ligand, are N, P, As, Sb, S, Se, and Te. Furthermore, a center of chirality does not even have to be an atom, as shown in the structure represented in Figure 2-70b, where the center of chirality is at the center of the achiral skeleton of adamantane. [Pg.78]

Achiral Columns Together with Chiral Mobile Phases. Ligand-exchange chromatography for chiral separation has been introduced (59), and has been appHed to the resolution of several a-amino acids. Prior derivatization is sometimes necessary. Preparative resolutions are possible, but the method is sensitive to small variations in the mobile phase and sometimes gives poor reproducibiUty. [Pg.279]

The chemistry of complexes having achiral ligands is based solely on the geometrical arrangement on titanium. Optically active alcohols are the most favored monodentate ligands. Cyclopentadienyl is also well suited for chiral modification of titanium complexes. [Pg.151]

Ethanol is an achiral molecule. The plane defined by atoms C-1, C-2, and O is a plane of symmetry. Ary carbon atom with two identical ligands contains a plane of symmetry feat... [Pg.78]

An achiral reagent cannot distinguish between these two faces. In a complex with a chiral reagent, however, the two (phantom ligand) electron pairs are in different (enantiotopic) environments. The two complexes are therefore diastereomeric and are formed and react at different rates. Two reaction systems that have been used successfully for enantioselective formation of sulfoxides are illustrated below. In the first example, the Ti(0-i-Pr)4-f-BuOOH-diethyl tartrate reagent is chiral by virtue of the presence of the chiral tartrate ester in the reactive complex. With simple aryl methyl sulfides, up to 90% enantiomeric purity of the product is obtained. [Pg.108]

A new generation coordination catalysts are metallocenes. The chiral form of metallocene produces isotactic polypropylene, whereas the achiral form produces atactic polypropylene. As the ligands rotate, the catalyst produces alternating blocks of isotactic and atactic polymer much like a miniature sewing machine which switches back and forth between two different kinds of stitches. [Pg.312]

In light of the previous discussions, it would be instructive to compare the behavior of enantiomerically pure allylic alcohol 12 in epoxidation reactions without and with the asymmetric titanium-tartrate catalyst (see Scheme 2). When 12 is exposed to the combined action of titanium tetraisopropoxide and tert-butyl hydroperoxide in the absence of the enantiomerically pure tartrate ligand, a 2.3 1 mixture of a- and /(-epoxy alcohol diastereoisomers is produced in favor of a-13. This ratio reflects the inherent diasteieo-facial preference of 12 (substrate-control) for a-attack. In a different experiment, it was found that SAE of achiral allylic alcohol 15 with the (+)-diethyl tartrate [(+)-DET] ligand produces a 99 1 mixture of /(- and a-epoxy alcohol enantiomers in favor of / -16 (98% ee). [Pg.296]

Furthermore, both (E)- and (Z)-enolborinates add to aldehydes in a stereoconvergcnt manner, giving predominantly, syn-/J-hydroxycarbonyl compounds49. In contrast, only moderate induced diastereoselectivity is obtained in the reaction of achiral aldehydes with C2-symmetric enolborates, whereby the chiral information is located in the ligand at the metal atom50. The ee of the product /1-hydroxy ketones ranges from 4 to 72%. [Pg.467]

The following C2-symmetric bis-sulfonamide is a more efficient controller of stereoselectivity in aldol additions. The incorporation of this ligand into the bromodiazaborolane, subsequent generation of the boron enolate derived from 3-pentanone, and addition to achiral aldehydes preferentially leads to the formation of ijn-adducts (synjanti 94 6 to >98 2) with 95-98% ee. Chemical yields of 85-95% are achieved51. [Pg.468]

However, if the isopinocampheyl residue is used instead of achiral ligands (such as butyl or cyclohexyl) in the enolborinate, the diastereoselectivity is slightly improved (93 7). Thus, the combination of substrate-induced and auxiliary-induced stereoselectivity has only a marginal effect in this case56. [Pg.473]

The complexation of achiral metal enolates by chiral additives, e.g., solvents or complexing agents could, in principle, lead to reagent-induced stereoselectivity. In an early investigation, the Reformatsky reaction of ethyl bromoacetate was performed in the presence of the bidentate ligand (—)-sparteine20. The enantioselectivity of this reaction varies over a wide range and depends on the carbonyl Compound, as shown with bcnzaldehyde and acetophenone. [Pg.580]

Abstract The dirhodium(II) core is a template onto which both achiral and chiral ligands are placed so that four exist in a paddle wheel fashion around the core. The resulting structures are effective electrophilic catalysts for diazo decomposition in reactions that involve metal carbene intermediates. High selectivities are achieved in transformations ranging from addition to insertion and association. The syntheses of natural products and compounds of biological interest have employed these catalysts and methods with increasing frequency. [Pg.203]

It should also be noted that the 5-exo-trig cyclization of achiral olefinic organolithiums has been found to proceed enantioselectively when conducted in the presence of a chiral ligand that serves to render the lithium atom stereogenic. Thus, for example, R) 1 -allyl-3-methylindolinc has been prepared in 86 % ee by cyclization of an achiral aryllithium in the presence of an equivalent of (-)-sparteine.15... [Pg.67]

Herrmann et al. reported for the first time in 1996 the use of chiral NHC complexes in asymmetric hydrosilylation [12]. An achiral version of this reaction with diaminocarbene rhodium complexes was previously reported by Lappert et al. in 1984 [40]. The Rh(I) complexes 53a-b were obtained in 71-79% yield by reaction of the free chiral carbene with 0.5 equiv of [Rh(cod)Cl]2 in THF (Scheme 30). The carbene was not isolated but generated in solution by deprotonation of the corresponding imidazolium salt by sodium hydride in liquid ammonia and THF at - 33 °C. The rhodium complexes 53 are stable in air both as a solid and in solution, and their thermal stability is also remarkable. The hydrosilylation of acetophenone in the presence of 1% mol of catalyst 53b gave almost quantitative conversions and optical inductions up to 32%. These complexes are active in hydrosilylation without an induction period even at low temperatures (- 34 °C). The optical induction is clearly temperature-dependent it decreases at higher temperatures. No significant solvent dependence could be observed. In spite of moderate ee values, this first report on asymmetric hydrosilylation demonstrated the advantage of such rhodium carbene complexes in terms of stability. No dissociation of the ligand was observed in the course of the reaction. [Pg.210]


See other pages where Achiral ligands is mentioned: [Pg.7]    [Pg.7]    [Pg.82]    [Pg.93]    [Pg.359]    [Pg.63]    [Pg.241]    [Pg.179]    [Pg.79]    [Pg.102]    [Pg.112]    [Pg.20]    [Pg.41]    [Pg.91]    [Pg.123]    [Pg.236]    [Pg.263]    [Pg.184]    [Pg.126]    [Pg.331]    [Pg.295]    [Pg.345]    [Pg.434]    [Pg.435]    [Pg.243]    [Pg.147]    [Pg.454]    [Pg.135]    [Pg.206]    [Pg.89]    [Pg.51]    [Pg.87]    [Pg.87]    [Pg.130]    [Pg.207]    [Pg.209]   
See also in sourсe #XX -- [ Pg.789 ]

See also in sourсe #XX -- [ Pg.11 , Pg.182 ]




SEARCH



Achiral anionic ligands

Achirality

© 2024 chempedia.info